Archetype ECS lib
Documentation

La gestion de contenu intégrée

Pirate]JL

Table of contents

Table of contents

1. Archetype ECS Lib

1.1
1.2
1.3

1.4

Install
Quick start
Notes & limitations

License

2. Explanation

2.1
2.2
2.3
2.4
2.5

2.6

ECS and the game loop

Integrating an ECS with Three.js

What people mean by a “full ECS”

Why archetype ECS?

Why deferred commands exist in an archetype ECS

Why use Events in ECS?

3. How To Guides

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

3.9

How to add InputState + AssetCache as Resources and use them in systems
How to add/remove components at runtime

How to despawn entities safely

How to have multiple Worlds (globe vs ground simulation)

How to integrate ECS into a game loop

How to run logic conditionally

How to split logic into multiple system phases

How to use ECS alongside Three.js

How to use Events to decouple systems across phases

4. Reference

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

Archetypes

Commands

Components

Entity

Reference: Events API

Non goals

Query — Reference

Resources (Singletons / World Globals)
Schedule

4.10 Systems

4.11 World

-2/77 -

O NN N

N © O o O

17
20
22
22
26
27
28
29
30
31
32
33
35
35
37
40
42
44
46
47
49
53
55
57

Copyright © 2026 PirateJL

Table of contents

5. Tutorials 63
5.1 Tutorial 1 — Your first ECS World 63
5.2 Tutorial 2 — Components & archetypes 65
5.3 Tutorial 3 — Deferred structural changes 68
5.4 Tutorial 4 — Writing systems 72
5.5 Tutorial 5 — ECS + Three.js (render-sync + safe spawn/despawn) 75

-3/77 - Copyright © 2026 Pirate]JL

1. Archetype ECS Lib

1. Archetype ECS Lib

A tiny archetype based ECS (Entity Component System) for TypeScript.
This documentation is split into 4 parts :

* Explanation of the general operation of the library
* Find information in the Reference
» Target a specific goal using the How-To Guides

* Learn through the Tutorials: step-by-step guidance

1.1 Install

NPM package available here

1 npm i archetype-ecs-1lib

1.2 Quick start

1 dimport { World, Schedule } from "archetype-ecs-1ib";

2

3 class Position { constructor(public x = @, public y = 0) {} }
4 class Velocity { constructor(public x = @, public y = 0) {} }
)

6 const world = new World();

7

8 // Spawn immediately

9 const e = world.spawn();
10 world.add(e, Position, new Position(0, 0));
11 world.add(e, Velocity, new Velocity(1, 0));
12
13 // A simple system
14 world.addSystem((w) => {
15 for (const { e, cil: pos, c2: vel } of w.query(Position, Velocity)) {
16 pos.x += vel.x * dt;
17 pos.y += vel.y * dt;
18
19 // Defer structural changes safely
20 if (pos.x > 10) w.cmd().despawn(e);
21 }
22 1)
23

24 world.update(1 / 60);

Note: systemFn is typed as (world: WorldApi, dt) => void.
Checkout the tutorials for more!

1.3 Notes & limitations

* This is intentionally minimal: no parallelism, no borrow-checking, no automatic conflict detection.
* Query results use ci/c2/... fields for stability and speed; you can wrap this in helpers if you prefer tuple returns.

* TypeId assignment is process-local and based on constructor identity (weakmap).

-4/77 - Copyright © 2026 Pirate]JL

https://www.npmjs.com/package/archetype-ecs-lib

1.4 License

1.4 License

This code is distributed under the terms and conditions of the MIT license.

 January 6,2026

@ January 3,2026

-5/77 - Copyright © 2026 Pirate]JL

https://github.com/PirateJL/archetype-ecs-lib/blob/master/LICENSE

N OO oo WwN

2. Explanation

2. Explanation

2.1 ECS and the game loop

ECS is best understood as the way you organize game state and game logic, not as the thing that does everything. In a
typical game, the loop still has input, rendering, audio, physics, networking, etc. ECS provides a consistent place for runtime
data (components) and behavior (systems), plus a schedule that defines when that behavior runs. This library already models
this explicitly with world.update(dt) and with a phase-based schedule that flushes between phases.

2.1.1 Frame phases

A “frame” is rarely just “update then draw”. Most games are structured in phases, even if informally. A common conceptual
breakdown:

. Input: read devices/events, translate into game intent

. Simulation: movement, Al, gameplay rules, timers

. Physics (optional separate step): integrate, solve collisions, constraints

. Post-sim: resolve gameplay outcomes, spawn/despawn, apply state transitions
. Render prep: build renderable data, sort, cull

. Render: submit to GPU / engine renderer

. End-of-frame: cleanup, present frame, etc.

The schedule is designed exactly for this idea: you define phases (strings) and run them in order, with flush() after each phase.

2.1.2 Where ECS fits
ECS typically fits in the simulation and render-prep parts of the loop:

* World holds the mutable runtime state (entities + components)
* Systems implement the game logic by querying components and mutating them
* Commands allow safe structural changes during those systems (cmd() — flush())

* Schedule provides deterministic ordering and safe mutation boundaries between phases
A useful mental model:

* Rendering engines want a renderable snapshot (meshes, transforms, materials, draw lists).
 Input systems produce intent/state (move left, fire, target position).

» Physics engines operate on physical representations (bodies, colliders).

ECS sits in the middle coordinating these, not replacing them.

A concrete mapping using this primitives

* Input phase: read input — write InputState component /resource — enqueue spawns/despawns if needed
e flush()

* Sim phase: run movement/Al/gameplay using queries — update Position, Velocity, etc.

e flush()

* Render phase: build lightweight render data (RenderTransform, visible, etc.) — hand off to renderer

-6/77 - Copyright © 2026 PirateJL

2.1.3 Why ECS does not replace rendering, input, or physics engines

This is why “flush points” exist in an ECS schedule: they define when the world structure is allowed to change and when the next

phase sees those changes.

2.1.3 Why ECS does not replace rendering, input, or physics engines
Rendering
A renderer is a specialized pipeline:

* GPU resources, shaders, batching, sorting, culling
» frame graph / render passes

 platform-specific backends
ECS is not a GPU pipeline. What ECS does well is:

* storing render-related data as components (Transform, Renderable, MaterialRef, etc.)

e running systems that prepare and synchronize data for the renderer

So ECS often produces a render list or updates engine scene objects, but the renderer still does the rendering.

Input
Input is inherently eventful and platform-driven:

* OS/window events
 device state polling

* mapping raw events to game actions

ECS can store input state (InputAxis, ActionPressed, etc.) and process it in systems, but it doesn’t replace the platform input

layer. In practice:

* platform collects input

* ECS system transforms it into gameplay-friendly state

Physics
Physics engines are optimized solvers:

» broadphase / narrowphase collision detection
* integrators and constraint solvers

* continuous collision, joints, sleeping, etc.

ECS can represent physics data (mass, collider type, desired forces) and drive the physics engine, but the solver itself is a

dedicated subsystem.
A common integration pattern:

* ECS - write forces/desired velocity into physics engine
* Physics step happens

» Physics results — write back transforms/velocities into ECS

=777 -

Copyright © 2026 PirateJL

2.1.4 The key idea: ECS is the coordination model

2.1.4 The key idea: ECS is the coordination model
ECS shines when you treat it as:

* a data model for game state (components)
* a behavior model for game logic (systems)

* an execution model for ordering (schedule + phases + flush points)

But rendering/input/physics are specialized domains with their own constraints and pipelines. ECS coordinates them by being
the “truth” for game state and by running the logic that translates between subsystems.

C January 4, 2026

@ January 4,2026

-8/77 - Copyright © 2026 Pirate]JL

2.2 Integrating an ECS with Three.js

2.2 Integrating an ECS with Three.js

Three.js is a rendering engine (scene graph + GPU submission). This ECS is a simulation architecture (data in components,
behavior in systems, ordered by a schedule, with safe structural changes via deferred commands + flush points). Integrating

them well means letting each do what it’s good at, and defining clean “hand-off” boundaries.

2.2.1 The mental model: ECS drives state, Three.js draws it

A practical split that scales:

* ECS World = authoritative game/sim state (position, velocity, health, selection, etc.)

* Three.js Scene = visual representation (Object3D transforms, meshes, materials, lights)

So the goal is not “put Three.js inside ECS”, but:

Systems write simulation state - a render-sync step pushes that state into Three.js objects.

2.2.2 Where ECS fits in the Three.js render loop
Three.js typically runs:
1. update (your code)
2. renderer.render(scene, camera)
With ECS, your “update” becomes scheduled phases, e.g.:
e input (read DOM/input, write components/resources)

* sim (gameplay, movement, Al)

e render (sync ECS - Three.js, then render)

The schedule already supports this exact idea and flushes commands between phases to make entity/component creation/

removal deterministic.

2.2.3 Why flush points matter for Three.js integration

Spawning/despawning and add/remove are structural changes in this ECS and are expected to be deferred while iterating
queries/systems.

That maps perfectly to Three.js object lifecycle:

* During sim: decide “this entity should appear/disappear” — enqueue ECS commands

¢ At flush boundary: ECS structure becomes stable
* Render-sync phase: create/remove corresponding object3D safely, because you’re no longer mid-iteration on archetype

tables

This is the same reason this ECS has cmd() / flush() and why schedule flushes between phases.

-9/77 - Copyright © 2026 Pirate]JL

2.2.4 A clean integration pattern: “Renderable bridge” components

2.2.4 A clean integration pattern: “Renderable bridge” components
Common approach:

* A Transform component (position/rotation/scale) is owned by ECS.
* A Renderable component carries a reference/handle to what Three.js should draw (mesh id, model key, material key...).

* A render-sync system queries (Transform, Renderable) and applies changes to the corresponding object3p .
Key idea: ECS components store “what it is” and “where it is”, while the actual Mesh/object3p lives in Three.js.
This keeps:

* ECS portable (not tied to Three.js types everywhere)

» Three.js free to manage GPU resources

2.2.5 One-way vs two-way sync (pick a source of truth)
Integration gets messy when both ECS and Three.js “own” transforms.
A scalable default:

* ECS is the source of truth for gameplay transforms.

* Three.js object3p is just the projection of that state.
Only do two-way sync when you truly need it (editor gizmos, drag interactions). Even then, treat it as a controlled input step:

* read Object3D change in input or tools phase
» write back to ECS components

¢ let sim proceed from ECS again

2.2.6 Why ECS does not replace Three.js (and shouldn’t try)
Even with a “full ECS” architecture, Three.js still owns:

* scene graph concerns (parenting, cameras, lights)
* GPU resource lifetimes (buffers, textures, materials)

e draw submission, sorting, batching, culling strategies

ECS complements that by making simulation state and logic scalable: archetype tables + queries + systems + scheduling.

2.2.7 Scaling tips (when entity counts grow)
When you have many similar visuals:

 prefer InstancedMesh in Three.js
¢ let ECS systems produce instance transforms (dense arrays) from queries

e upload those transforms once per frame

This aligns with why archetype ECS exists: tight iteration over dense component columns.

-10/77 - Copyright © 2026 Pirate]JL

2.2.7 Scaling tips (when entity counts grow)

(S January 4, 2026

@ January 4, 2026

-11/77 - Copyright © 2026 PirateJL

2.3 What people mean by a “full ECS”

2.3 What people mean by a “full ECS”

“ECS” can mean just a storage model (entities + components in some container), or it can mean an entire game/app
architecture where most runtime state and behavior flows through an ECS world + schedule + systems.

A “full ECS” is typically an architecture where:

» Entities are only IDs/handles (no behavior).

* Components are only data.

» Systems are where behavior lives (pure-ish functions operating on data).

* A World is the single source of truth for runtime state.

* A Scheduler (or “app loop”) defines when systems run and in what order.

» Structural changes are controlled (often via a command buffer) so iteration stays safe and fast.

This library already contains several “full ECS” building blocks: archetype tables (SoA), queries, deferred commands, and a
phase-based schedule.

What makes it “full” is less “do you use archetypes?” and more “does the ECS define the whole program’s execution model?”

2.3.1 ECS as architecture, not just storage
Storage-only ECS (not “full”)
This is common in small libs or quick implementations:

 Entities: IDs

* Components: data bags

* “Systems”: often just loops in user code

* Little/no scheduling model

* No consistent lifecycle for input — simulation — rendering

e Structural changes are ad-hoc

You can build a game with this, but the ECS isn’t the organizing principle—it’s a container.

Architecture ECS (“full ECS”)
Here, ECS is the spine of the app:

e There’s a main schedule (often phases like input - sim - render).

» Systems are registered, ordered, and executed consistently each tick.

* Cross-cutting state is handled intentionally (resources/singletons, events, time, config).
e Structural changes are made safe/deterministic (command buffers, flush points).

* You get a uniform pattern for new features: “add data + add system”.

The schedule explicitly models phase ordering + flush barriers, which is a key “architecture ECS” ingredient.

2.3.2 Difference between a library ECS and an engine ECS
Library ECS

Goal: provide core ECS mechanics.

-12/77 - Copyright © 2026 Pirate]JL

2.3.2 Difference between a library ECS and an engine ECS

Typical traits:

* Focus on storage + query performance (archetypes/SoA)
* Minimal assumptions about the rest of the program
» Simple scheduling (or none), often single-threaded

* You (the user) integrate input, rendering, physics, assets, scenes, etc.

Engine ECS (Bevy / Unity DOTS / etc.)
Goal: ECS is the entire runtime framework.
Engine ECS usually includes (beyond a library):

» A full app lifecycle (startup, update, fixed update, shutdown)

* Integrated input, rendering, audio, physics, animation, Ul

* Asset pipeline + hot reload + serialization

e Advanced scheduling: dependency graphs, system sets, run criteria, fixed timesteps
e Often parallel execution + conflict detection

» Tooling/editor integration

So: library ECS = the “ECS core”. engine ECS = ECS core + everything around it, with ECS as the central organizing
model.

C January 4, 2026

@ January 4,2026

-13/77 - Copyright © 2026 Pirate]JL

2.4 Why archetype ECS?

2.4 Why archetype ECS?

An archetype ECS organizes entities into tables where every entity in a table shares the same component set, stored in SoA
form (one column per component). This library explicitly follows this model: “Archetypes (tables) store entities in a SoA layout...
Queries iterate matching archetypes efficiently... Commands defer structural changes...”

The “why” is mostly about making the common case (systems that iterate lots of entities with the same components) extremely
fast and predictable.

2.4.1 Cache locality
Most game/sim systems look like:

e “for all entities with pPosition and velocity, update position”

e “for all entities with Transform and Renderable, build render data”
With archetypes, those entities live together in a table, and each component is a dense column:

* Position[] contiguous

e Velocity[] contiguous

So the CPU reads memory sequentially, which is what caches and prefetchers love. That’s the practical meaning of cache
locality: fewer cache misses, more work per nanosecond.

In the library, this is literally the storage promise: SoA archetype tables + queries over matching archetypes.

2.4.2 Branch elimination (and “no-join” iteration)
In many ECS designs, the core loop must constantly ask:

* “does this entity have Velocity?”

» “if yes, fetch it; if not, skip”
That creates branches and scattered memory access.
With archetypes, the membership check is moved up:

1. pick archetypes that already contain all required components

2. iterate their rows

Inside the inner loop, there’s no per-entity “has component?” branching—every row is guaranteed to match. The API reflects that
by querying required component types and yielding direct component references (c1, c2, ...).

This is what people mean by branch elimination in archetype ECS: fewer conditional checks in the hot loop, more straight-line
code.

-14/77 - Copyright © 2026 Pirate]JL

2.4.3 Predictable iteration

2.4.3 Predictable iteration
Archetype iteration tends to be predictable because:

* You iterate dense arrays (rows/columns), not sparse IDs.
* Results are shaped consistently (e, c1, c2, ... in argument order).

» Structural changes are controlled: this library emphasizes deferring structural changes via cmd() and applying them at
flush() points.

e schedule adds explicit “phase barriers” by flushing between phases, making the world structure stable during each phase’s

iteration.

That predictability is less about “deterministic order of entities” and more about deterministic rules for when the world can
change shape.

2.4.4 Comparison with sparse-set ECS

A sparse-set ECS typically stores each component type separately (often as a dense array + sparse index by entity id). It’s
excellent for:

« fast lookup for a single component type (Position alone)
e cheap per-component iteration

 simple storage and often cheaper structural changes for single components

But when a system needs multiple components (Position + Velocity + Mass + Forces), sparse-set often needs some form of
join:

e iterate one component pool, check membership in the others
* or intersect sets / hop through indirections

That can introduce:

* more branching (if has(...))

* more random memory access (chasing indices across pools)
Archetypes flip that trade-off:

* multi-component iteration is the “happy path” (no join inside the hot loop)

* but structural changes can be more expensive because adding/removing a component may move an entity between tables.

Rule of thumb

 If your game spends most time in systems that read/write several components per entity, archetypes tend to shine.

* If your workload is lots of single-component iteration and high churn (constant add/remove), sparse-set can be simpler and
sometimes cheaper.

2.4.5 The real trade-off (why it's not “always archetypes”)
Archetype ECS wins by making the hot loops fast, but it pays for it with:

 structural churn cost (moving entities between tables on add/remove)
* many archetypes if you have lots of component combinations

¢ a stronger need for command buffering + flush boundaries to keep iteration safe.

That’s why a “full ECS” architecture often includes commands + scheduling: it’s the natural partner to archetype storage.

-15/77 - Copyright © 2026 Pirate]JL

2.4.5 The real trade-off (why it’s not “always archetypes”)

(S January 14,2026

@ January 4, 2026

-16/77 - Copyright © 2026 PirateJL

2.5 Why deferred commands exist in an archetype ECS

2.5 Why deferred commands exist in an archetype ECS

In an archetype ECS, deferred commands (a command buffer) are not a “nice-to-have”. They exist because the fastest storage
model makes certain mutations unsafe during iteration. The library API expresses this directly with world.cmd(),
world.flush(), and Schedule.run(...)/flush barriers.

2.5.1 Archetypes are tables, and queries walk those tables
An archetype ECS stores entities in tables:

* one archetype = one component set
* one row = one entity

* one column per component type (SoA)

A query like world.query(Position, Velocity) does not “scan entities”. It first selects archetypes that contain the required
component columns, then iterates dense rows in those tables.

This density is where the performance comes from.

2.5.2 The core problem: structural changes move entities between tables
A structural change is anything that changes the component set of an entity:

* spawn()

* despawn(e)

* add(e, Ctor, value)
* remove(e, Ctor)

In an archetype ECS, add/remove usually means:

1. remove the entity’s row from its current archetype table
2. insert a row into another archetype table

3. update internal bookkeeping (where the entity lives now)
That is fundamentally different from set(e, ctor, value), which just updates a value inside the same row/column.

So: structural change = table move.

2.5.3 Why it's unsafe to do structural changes during a query
When you iterate a query, you are conceptually doing:

e “for each matching archetype table”
» “for each row index in that table”

* “read columns at that row”

If you structurally change any entity during this loop, you can break the iteration invariants:

1) Swap-remove can invalidate the current row

Many archetype implementations remove rows with swap-remove (O(1)): the last row is swapped into the removed row index.

-17/77 - Copyright © 2026 Pirate]JL

2.5.4 Deferred commands are the solution: separate “read/iterate” from “mutate structure”

If you remove entity A at row i, entity B may be swapped into row i.

 If your loop then increments i, entity B might be skipped.

* Or processed twice depending on iteration strategy.

2) Moving entities changes which archetypes match
Adding/removing a component can move an entity into or out of the set of archetypes that the query is iterating.
If you mutate membership while iterating:

e you can end up iterating an archetype that didn’t exist in the matching set at the start

e or miss entities that moved into a matching archetype

3) Internal indices can become stale mid-loop

The library world tracks where an entity lives (which archetype + row). A structural change updates those indices. If you mutate
while holding references from the iteration, you can end up with:

 stale row pointers
* stale bookkeeping

* inconsistent state if multiple mutations occur

Even if you “think it works”, it’s fragile and will eventually bite.

2.5.4 Deferred commands are the solution: separate “read/iterate” from “mutate structure”
A command buffer enforces a clean two-step model:

1. During iteration: read data, compute decisions, mutate component values (safe)

2. At a safe boundary: apply structural changes in a batch (safe)
That’s exactly what the library documents:

* world.cmd() enqueues structural operations
* world.flush() applies queued commands
* world.update(dt) runs systems, then flushes at frame end

* sSchedule.run(...) flushes between phases, providing deterministic barriers

This is why deferred commands exist: they preserve iteration correctness without giving up table-based performance.

2.5.5 Why flushing in phases is architecturally important

The library schedule explicitly flushes after each phase.

This is not just “nice ordering”. It creates deterministic points where the world’s structure is allowed to change.
Example mental model:

* Input phase: decide spawns/despawns based on input — enqueue commands

* Flush: apply those spawns so they exist for simulation

* Simulation phase: move things, detect collisions — enqueue structural changes
* Flush: apply spawns/despawns/removals before render

* Render phase: build render data from a stable world snapshot

-18/77 - Copyright © 2026 Pirate]JL

That separation reduces “action at a distance” bugs and makes debugging easier:

* “why does entity exist in sim but not render?” — check which phase flushed it.

2.5.6 What you gain by deferring

2.5.6 What you gain by deferring
Correctness

* No skipped entities
* No double-processing due to swap-remove effects

e Stable iteration semantics

Determinism

» Structural changes occur at explicit boundaries

» Easier to reason about ordering

Performance

* Keeps archetype iteration tight and cache-friendly

* Batching structural operations reduces churn

2.5.7 What to do inside a system
Inside a system (or a query loop), follow this rule:

¢ [mutate component values directly (e.g. pos.x += ...)
* [1 enqueue structural changes via cmd()

* X don’t call structural world ops directly mid-iteration

2.5.8 Summary: the “why” in one sentence

Deferred commands exist because archetype queries iterate dense tables, and structural changes move rows between
tables, which can invalidate iteration—so we queue structural changes and apply them at safe flush boundaries (flush() /

schedule phases).

@ January 4,2026

Q@ January 4, 2026

- 19/77 -

Copyright © 2026 PirateJL

2.6 Why use Events in ECS?

2.6.1 Events solve a different problem than Components and Resources
ECS has three kinds of data:

* Components: persistent, per-entity state (Position, Velocity, Health)
* Resources: persistent, global state (Input, Time, Config, caches)

* Events: transient messages (Hit happened, Click happened, Play sound)

Trying to represent “something happened” as a component usually causes awkward designs:

* adding/removing “Event components” becomes structural churn
* you need cleanup systems to remove them

» multiple systems race to observe/remove them

Events avoid that by being explicitly transient.

2.6 Why use Events in ECS?

2.6.2 Events reduce coupling between systems
Without events:

e combatSystem might call audiosystem directly

 or it might mutate a shared global array
With events:

 producers don’t know consumers exist

e consumers don’t know who produced the messages

This keeps systems reusable and easy to rearrange in Schedule .

2.6.3 Why double-buffering?
A common bug in event systems is “events appear while I'm iterating”.
Double-buffering prevents that:

e consumers read a stable snapshot (read buffer)
e producers write to a different buffer (write buffer)

* swap happens at deterministic boundaries

No surprises. No iterator invalidation. No mid-phase visibility.

2.6.4 Why phase-scoped delivery?
This ECS already has a concept of phase boundaries:

e structural changes are deferred via Commands

e flush() applies them between phases
Events align with the same boundary:

* swapEvents() delivers events between phases

-20/77 -

Copyright © 2026 PirateJL

2.6.5 Trade-offs (and the forwarding pattern)

This makes it easy to design pipelines:

e input produces actions — beforeUpdate consumes
e update produces gameplay events — afterUpdate consumes
e render produces UI/VFX events — afterRender consumes

* audio consumes sound events

2.6.5 Trade-offs (and the forwarding pattern)

With phase-scoped delivery, an event is visible in the next phase only. To deliver an event across multiple phases (e.g., from
update to audio), you forward it by draining and re-emitting.

This is deliberate:

« it keeps pipelines explicit
e prevents “stale” events lingering through unrelated phases

* makes delivery deterministic and easy to debug

€ January 14, 2026

Q@ January 13,2026

-21/77 - Copyright © 2026 Pirate]JL

3. How To Guides

3. How To Guides

3.1 How to add InputState + AssetCache as Resources and use them in systems

3.1.1 Goal

Store Input state and an Asset cache as world Resources, then access them inside systems using requireResource() .

Example InputStateRes

export class InputStateRes

{

public keysDown = new Set<string>();
public keysPressed = new Set<string>();
public keysReleased = new Set<string>();

public mouseX = 0;
public mouseY = 0;
public mouseButtonsDown = new Set<number>();
public mousePressed = new Set<number>();

public mouseReleased =
public wheelDeltaYy = 0;

new Set<number>()

beginFrame(): void

keysPressed.clear();
keysReleased.clear();

.mousePressed.clear();

mouseReleased.clear();
wheelDeltaY = 0;

keyDown(code: string): void

7

// pressed this frame
// released this frame

// pressed this frame
// released this frame

if (!this.keysDown.has(code)) this.keysPressed.add(code);

{
this.
this.
this
this.
this.
}
{
this
}

.keysDown.add(code);

keyUp(code: string): void

if (this.keysDown.has(code)) this.keysReleased.add(code);

this
}

.keysDown.delete(code);

mouseMove(x: number, y: number): void {

.mouseX = X;
.mouseY = y;

mouseDown(btn: number): void

if (!this.mouseButtonsDown.has(btn)) this.mousePressed.add(btn);

this

this
}
{

this
}

.mouseButtonsDown.add(btn);

mouseUp(btn: number): void

if (this.mouseButtonsDown.has(btn)) this.mouseReleased.add(btn);

.mouseButtonsDown.delete(btn);

wheel(deltaY: number): void

this
}
{

this
}

.wheelDeltaYy += deltay;

-22/77 -

Copyright © 2026 PirateJL

Example AssetCacheRes
1 export class AssetCacheRes
2 {
3 private images = new Map<string, HTMLImageElement>();
4 private pending = new Map<string, Promise<HTMLImageElement>>();
5
6 /** Loads once, dedupes concurrent calls, returns the same instance thereafter.
7 public getImage(url: string): Promise<HTMLImageElement>
8 {
9 const ready = this.images.get(url);
10 if (ready) return Promise.resolve(ready);
11
12 const p = this.pending.get(url);
a3 if (p) return p;
14
a5 const promise = new Promise<HTMLImageElement>((resolve, reject) => {
16 const img = new Image();
17 img.onload = () => {
18 this.images.set(url, img);
19 this.pending.delete(url);
20 resolve(img);
21 3
2 img.onerror = (e) => {
25 this.pending.delete(url);
24 reject(e);
25 3
26 img.src = url;
27 Hi
28
29 this.pending.set(url, promise);
30 return promise;
31 }
32
33 /** Returns the image if already loaded; otherwise undefined. */
34 public peekImage(url: string): HTMLImageElement | undefined {
35 return this.images.get(url);
36 }
37}

*/

3.1.2 1) Register the resources at startup

3.1.2 1) Register the resources at startup

1
2

world.initResource(InputStateRes, () => new InputStateRes());
world.initResource(AssetCacheRes, () => new AssetCacheRes());

That's the only “required” setup. Everything else assumes these exist.

3.1.3 2) Wire DOM events into InputStateRes

Attach listeners once:

© 0 ~NO O A ®WNR

11

export function attachInput(world: worldApi): void

{

const input = world.requireResource(InputStateRes);

window.addEventListener ("keydown", e => input.keyDown(e.code));
window.addEventListener("keyup", e => input.keyUp(e.code));

window.addEventListener("mousemove", e => input.mouseMove(e.clientX, e.clientY));

window.addEventListener ("mousedown", e => input.mouseDown(e.button))
window.addEventListener ("mouseup", e => input.mouseUp(e.button));
window.addEventListener ("wheel", e

Call it after initResource(...).

=> input.wheel(e.deltaY), { passive: true });

- 23/77 -

Copyright © 2026 PirateJL

3.1.4 3) Reset “pressed/released” flags once per frame

3.1.4 3) Reset “pressed/released” flags once per frame

Add a phase/system that runs before gameplay update:

1 export function beginFrameSystem(w: WorldApi, _dt: number): void
2 {

) w.requireResource(InputStateRes).beginFrame();

4}

3.1.5 4) Read input from systems

Example “move player” system:

1 export function playerMoveSystem(w: WorldApi, dt: number): void
2 {

3 const input = w.requireResource(InputStateRes);

4

5 let dx = 0, dy = 0;

6 if (input.keysDown.has("Keyw")) dy -= 1;

7 if (input.keysDown.has("KeyS")) dy += 1;

8 if (input.keysDown.has("KeyA")) dx -= 1;

9 if (input.keysDown.has("KeyD")) dx += 1;
10
414l const speed = 220;
12
s for (const { c1: tr } of w.query(Transform, PlayerTag)) {
14 tr.x += dx * speed * dt;

15 tr.y += dy * speed * dt;

16 }

17}

3.1.6 5) Use AssetCacheRes in a render system (deduped async loads)

1 export function renderSpritesSystem(ctx: CanvasRenderingContext2D)
2 {

3 return (w: WorldApi, _dt: number): void => {

4 const assets = w.requireResource(AssetCacheRes);

5

6 for (const { ci: tr, c2: sp } of w.query(Transform, Sprite)) {
7 assets.getImage(sp.url).catch(() => {});

8 const img = assets.peekImage(sp.url);

9 if (!img) continue;

10

11 ctx.drawImage(img, tr.x, tr.y, sp.w, sp.h);

12 }

13 3

14}

3.1.7 6) Run phases in order
Minimal schedule:

1 sched.add("beginFrame", beginFrameSystem);
2 sched.add("update", playerMoveSystem);
2 sched.add("render", renderSpritesSystem(ctx));

Game loop:

1 sched.run(world, dt, ["beginFrame", "update", "render"]);

-24/77 - Copyright © 2026 Pirate]JL

3.1.8 Common variations

3.1.8 Common variations
Optional resource usage
If a resource is optional (debug/editor), use:

1 const dbg = w.getResource(DebugRes);
2 if (dbg) dbg.enabled = true;

Preload assets (menulloading screen)

1 await Promise.all(urls.map(u => world.requireResource(AssetCacheRes).getImage(u)));

C January 14,2026

@ January 9, 2026

-25/77 - Copyright © 2026 Pirate]JL

3.2 How to add/remove components at runtime

1. Define your component types (classes):

1
2

class
class

Position { constructor(public x
Velocity { constructor(public x

0, public y
0, public y

1. Add/remove immediately when you are not iterating a query:

© ®NOUA®WN R

const

world.

wor ld

// or
const
wor ld

world.

e = world.spawn();
add(e, Position, new Position(0©, 0));

.add(e, Velocity, new Velocity(1, 0));

add many at once
z = world.spawn();

.addMany(z, [new Position(®,), new Velocity(1, 0)])

remove(e, Velocity);

1. Add/remove during a query/system using deferred commands:

© 0N UA®WN R

10
11
12
13
14
15
16

world.addSystem((w: any) => {
for (const { e, cil: pos } of w.query(Position)) {

}
Hi

if (pos.x > 10) w.cmd().add(e, Velocity, new Velocity(1, 0));
if (pos.x < 0) w.cmd().remove(e, Velocity);

// Or remove many at once
world.addSystem((w: any) => {
for (const { e, c1: pos } of w.query(Position, Velocity)) {

}
1}

if (pos.x < 0) w.cmd(

.removeMny(e, Position, Velocity);

// apply queued structural changes
world.flush();

(January 8,2026

@ January 4,2026

- 26/77 -

3.2 How to add/remove components at runtime

Copyright © 2026 PirateJL

3.3 How to despawn entities safely

3.3 How to despawn entities safely
1. Despawn immediately when not iterating:

1 world.despawn(e);

1. Despawn during a query/system via cmd() :

world.addSystem((w: any) => {
for (const { e, c1: pos } of w.query(Position)) {
if (pos.x > 10) w.cmd().despawn(e);
}
1

// apply despawns
world.flush();

© NG AWN R

1. Or rely on end-of-frame flush:

1 world.update(dt); // runs systems, then flushes

© January 4,2026

@ January 4, 2026

-27/77 - Copyright © 2026 Pirate]JL

3.4 How to have multiple Worlds (globe vs ground simulation)

3.4 How to have multiple Worlds (globe vs ground simulation)
. Create two worlds:

1 const globeWorld = new World();
2 const groundworld = new World();

. Give each one its own schedule (recommended):

1 const globeSched
2 const groundSched

new Schedule();
new Schedule();

. Run both each frame (same dt):

1 globeSched.run(globeworld, dt, ["input", "sim", "render"]);
2 groundSched.run(groundworld, dt, ["input", "sim", "render"]);

. Share data explicitly between worlds (pick one):

. copy values at a known point (end of sim, start of other sim)

. or have a “bridge” step in your outer loop that reads from one world and writes into the other (via normal add/set or via cmd() +

Flush())

C January 14, 2026

@ January 4,2026

- 28/77 -

Copyright © 2026 PirateJL

3.5 How to integrate ECS into a game loop

3.5.1 Option A— Use world.update(dt)

1. Register systems with addsystem(...)

2. In your loop call:

1
2
3

function tick(dt: number) {

world.update(dt); // runs systems, then flushes

3.5.2 Option B — Use schedule phases (recommended for games)

1. Build a schedule (input, sim, render)

2.In requestAnimationFrame :

© ®~NO U A ®WN R

let last = performance.now();
function frame(now: number) {
const dt = (now - last) / 1000;

last = now;

sched.run(world, dt, ["input", "sim", "render"]); // flush between phases
renderer.render(scene, camera);

requestAnimationFrame(frame);

}

requestAnimationFrame(frame);

© January 4,2026

@ January 4,2026

- 29/77 -

3.5 How to integrate ECS into a game loop

Copyright © 2026 PirateJL

3.6 How to run logic conditionally

3.6 How to run logic conditionally

3.6.1 Option A— Guard inside the system (simple)

1. Put a condition at the top:

1 let paused = false;

2

3 world.addSystem((w: any, dt: number) => {

4 if (paused) return;

5 for (const { c1: pos, c2: vel } of w.query(Position, Velocity)) {
6 pos.x += vel.x * dt;

7 }

8 1)

3.6.2 Option B — Conditional phases (skip whole groups)
1. Maintain your phase list dynamically:
const base = ["input", "sim", "render"];
function getPhases(paused: boolean) {

1
2
3
4 return paused ? ["input", "render"] : base;
5
6
7

}

sched.run(world, dt, getPhases(paused));

3.6.3 Option C — Wrap systems (reuse predicates)
1. Make a helper:

const runIf = (pred: () => boolean, fn: (w: any, dt: number) => void) =>
(w: any, dt: number) => { if (pred()) fn(w, dt); };

for (const { c1: pos, c2: vel } of w.query(Position, Velocity)) {

1
2
3
4 world.addSystem(runIf(() => !paused, (w, dt) => {
5
6 pos.x += vel.x * dt;

7

8

)i
 January 4,2026

@ January 4,2026

-30/77 - Copyright © 2026 Pirate]JL

3.7 How to split logic into multiple system phases

3.7 How to split logic into multiple system phases

1. Create a schedule and register systems by phase name:

1 const sched = new Schedule();

2

3 sched

4 .add("input", (w: any) => { /* ... */ })

5 .add("sim", (w: any, dt: number) => { /* ... */ })
6 .add("render", (w: any) => { /* ... */ });

1. Define phase order:

1 const phases = ["input", "sim", "render"]

1. Run it each tick (flush happens after each phase):

Al sched.run(world, dt, phases);

© January 4,2026

Q@ January 4, 2026

-31/77 - Copyright © 2026 Pirate]JL

—_

W N

3.8 How to use ECS alongside Three.js

3.8.1 Pattern: ECS owns state, Three.js owns objects

. Keep Three.js objects in a map (outside ECS):

1 const meshes = new Map<number, THREE.Object3D>(); // key = entity.id

. Add components for simulation and “render tag”:

1 class Position { constructor(public x=0, public y=0, public z=0) {} }
2 class Renderable { constructor(public kind: "cube" | "ship" = "cube") {} }

. Spawn entities in ECS:

const e = world.spawnMany (
new Position(®, 0, 0),
new Renderable("cube")

)

AW N R

. Create a render-sync system in a render phase:
. create missing meshes
. update transforms

. remove meshes for despawned entities (see step 5)

1 sched.add("render", (w: any) => {
2 for (const { e, cl1: pos, c2: rend } of w.query(Position, Renderable)) {
3 let obj = meshes.get(e.id);
4 if (tobj) {
5 obj = makeObjectFromKind(rend.kind); // your factory
6 scene.add(obj);
7 meshes.set(e.id, obj);
8 }
9 obj.position.set(pos.x, pos.y, pos.z);
10 }
1 1}

. Despawn visually after flush:
. despawn in ECS via cmd().despawn(e)

. after the flush boundary, remove from meshes if it’'s gone

A simple cleanup pass each frame:

for (const [id, obj] of meshes) {

AW N B

}

C January 8,2026

@ January 4,2026

- 32/77 -

// if you track alive entities externally, remove when not alive anymore.
// (One common approach: record seen IDs during the render query and remove the rest.)

3.8 How to use ECS alongside Three.js

Copyright © 2026 PirateJL

3.9 How to use Events to decouple systems across phases

3.9 How to use Events to decouple systems across phases

3.9.1 Goal

Emit events in one phase and consume them in a later phase, without coupling systems directly.

This guide assumes you already have a schedule with multiple phases and that the schedule swaps events between phases.

3.9.2 1) Define event types
Use classes (recommended) or token keys.

export class DamageEvent {
constructor(public target: Entity, public amount: number) {}

}

export class PlaySoundEvent {

1
2
2
4
5
6 constructor(public id: string) {}
7

}

3.9.3 2) Emit events from a producer system

Example: gameplay system emits damage + sound.

1 function combatSystem(w: WorldApi, _dt: number) {

2 // ... detect hit

3 w.emit (DamageEvent, new DamageEvent(target, 10));
4 w.emit(PlaySoundEvent, new PlaySoundEvent("hit"));
5 1}

3.9.4 3) Consume events in the next phase
Place a consumer in the next phase (phase-scoped delivery):

function applyDamageSystem(w: WorldApi, _dt: number) {
w.drainEvents(DamageEvent, (ev) => {
const hp = w.get(ev.target, Health);
if (!'hp) return;
hp.value -= ev.amount;

i

~No o R ®N R

Schedule order:

1 schedule.add("update", combatSystem);
2 schedule.add("afterUpdate", applyDamageSystem);

-33/77 - Copyright © 2026 Pirate]JL

3.9.5 4) Deliver events to late phases (forwarding pattern)

3.9.5 4) Deliver events to late phases (forwarding pattern)

With phase-scoped delivery, an event emitted in update is visible in afterupdate . If you want it to reach audio several phases
later, forward it:

function forwardSoundSystem(w: WorldApi, _dt: number) {
w.drainEvents(PlaySoundEvent, (ev) => {
w.emit(PlaySoundEvent, ev); // re-emit for the next phase

1

1

2

3

4

5 %}
6

7 function audioSystem(w: WorldApi, _dt: number) {
8 w.drainEvents(PlaySoundEvent, (ev) => {

9 console.log("[audio] play:", ev.id);

10 K

Example pipeline:

schedule.add("update", combatSystem); // emits PlaySoundEvent
schedule.add("afterUpdate", forwardSoundSystem); // forwards -> render
schedule.add("afterRender", forwardSoundSystem); // forwards -> audio
schedule.add("audio", audioSystem); // consumes

AW N R

3.9.6 5) Use events(key).values() for read-only inspection
If you need to check what’s readable without consuming it:

1 const pending = w.events(DamageEvent).values();
2 if (pending.length > 0) {

2 // inspect (do not store array reference)
4

}

Prefer drainevents for typical processing.

3.9.7 6) Clear events when resetting state
To clear one type:

1 w.clearEvents(DamageEvent);

To clear all readable event buffers:

1 w.clearEvents();

C January 13,2026

@ January 13,2026

-34/77 - Copyright © 2026 Pirate]JL

4. Reference

4. Reference

4.1 Archetypes

4.1.1 Purpose

An archetype is an internal storage “table” that groups together all entities sharing the same set of component types.
Archetypes are the core performance mechanism of this ECS: queries match archetypes first, then iterate rows inside them.

4.1.2 Storage model
Table layout (SoA)
Archetypes store component data in Structure of Arrays (SoA) form:

* one column per component type

* each entity occupies a row across all columns

This is the reason queries are efficient: iteration is over dense arrays rather than scattered objects.

4.1.3 Archetype membership
Structural changes move entities between archetypes
When an entity’s component set changes, the entity moves to a different archetype:

* add(e, Ctor, value) is structural and may move the entity to another archetype

* remove(e, Ctor) is structural and may move the entity to another archetype
Non-structural updates do not change archetype membership:

* set(e, Ctor, value) updates the value but does not change the component set

4.1.4 Queries and archetypes

Archetype filtering

query(...ctors) only iterates archetypes that contain all required component columns, then yields matching entity rows.

Query row shape
For query(A, B, C), the yielded row contains:

* e (entity handle)

* c1, c2, c3 component values in the same order as the ctor arguments

- 35/77 - Copyright © 2026 Pirate]JL

4.1.5 Safety constraints

4.1.5 Safety constraints
Structural changes during iteration

While iterating queries (and generally while systems run), doing structural changes directly can throw. The recommended
pattern is:

* enqueue structural changes via world.cmd()

* apply them via world.flush() (or at the end of world.update(dt))

This matters because structural changes imply archetype moves.

4.1.6 Visibility / Public API

Archetypes are an internal mechanism (the public exports are Types, TypeRegistry, Commands, World, Schedule). Users interact
with archetypes only indirectly through world operations and query() .

C January 4, 2026

@ January 4,2026

-36/77 - Copyright © 2026 Pirate]JL

4.2 Commands

4.2 Commands

4.2.1 Purpose

commands is a deferred structural change buffer. It lets you enqueue structural operations (spawn/despawn/add/remove) while
iterating queries or running systems, then apply them later via world.flush() (or at the end of world.update(dt)).

4.2.2 How to obtain a commands buffer
world.cmd(): Commands
world.cmd() returns a commands instance you can use to enqueue operations.
Typical usage:
const cmd = world.cmd();

cmd.spawn((e) => {
cmd.add(e, Position, new Position(0, 0));

1

2

3

4

5 1)
6

7 cmd.add(entity, Velocity, new Velocity(1, 0));
g cmd.remove(entity, Velocity);

9 cmd.despawn(entity);

11 world.flush();

4.2.3 Supported operations

The command buffer supports these operations (as documented by the project):

spawn(init?)
Enqueues creation of a new entity.

* init?: (e: Entity) => void is an optional callback invoked with the spawned entity, typically used to enqueue add() calls for
initial components.

spawnBundle(...items: ComponentCtorBundleItem[])

Queues the creation of a new entity, along with its initial components, and applies everything on the next flush (within the same
flush cycle).

e ...items: ComponentCtorBundleItem[] is the list of components to add to the newly created entity.

* Internally, it iterates over the items and calls add(e, ctor, value) for each component.

despawn(e: Entity)

Enqueues removal of an entity.

-37/77 - Copyright © 2026 Pirate]JL

4.2.4 Applying commands

despawnBundle(entities: Entity[])
Enqueues the destruction of multiple entities. The actual removals are applied when commands are flushed.

* entities: Entity[] is the list of entities to despawn.

* Internally, it iterates over the array and calls despawn(e) for each entity.

add(e, ctor, value)

Enqueues adding a component to an entity. This is a structural change (it may move the entity between archetypes), which is
why it is commonly deferred.

addBundle(e: Entity, ...items: ComponentCtorBundleItem[])
Enqueues adding multiple components to an existing entity. All component adds are applied on flush.

* e: Entity is the target entity.
e ...items: ComponentCtorBundleItem[] is the list of components to add.

¢ Internally, it loops through the items and calls add(e, ctor, value) for each component.

remove(e, ctor)

Enqueues removing a component from an entity. This is also a structural change.

removeBundle(e: Entity, ...ctors: ComponentCtor<any>[])
Enqueues removal of multiple component types from an entity. The removals are applied on flush.

* e: Entity is the target entity.
e ...ctors: ComponentCtor<any>[] is the list of component constructors (types) to remove.

¢ Internally, it loops through the ctors and calls remove(e, ctor) for each one.

4.2.4 Applying commands
world.flush(): void

Applies all queued commands. world.update(dt) also flushes automatically at the end of the frame.

With schedule

When using Schedule, world.flush() is called after each phase, creating deterministic “phase barriers” for command
application.

4.2.5 Safety rule
Direct structural operations can throw while iterating queries or running systems. The intended pattern is:

e enqueue structural changes with worid.cmd()

e apply them with world.flush() (or let update() do it)

-38/77 - Copyright © 2026 Pirate]JL

4.2.5 Safety rule

(S January 8, 2026

@ January 4, 2026

-39/77 - Copyright © 2026 PirateJL

4.3 Components

4.3 Components

4.3.1 Purpose

A component is a unit of data attached to an Entity . In this ECS, components are stored in archetypes (tables) using a
Structure-of-Arrays (SoA) layout: one column per component type.

4.3.2 Component “type” (key)
A component type is identified by a constructor (typically a class):

0) {3}
0) {3}

0, public y
0, public y

1 class Position { constructor(public x
2 class Velocity { constructor(public x

Any class used as a type key is considered a valid component type.

Typeld mapping

Internally, component constructors are mapped to a stable numeric TypeId via typeId(). Typeld assignment is process-local
and based on constructor identity (via weakMap).

4.3.3 Component “value”
The component value is the actual instance stored in the archetype column (e.g. new Position(1,2)).

» Values are stored per-archetype, per-column (SoA)

* Queries return direct references to these values (you mutate them in place)

4.3.4 World operations on components

All component operations are done through world using the component constructor as the key.

Presence | access

* has(e, Ctor): boolean

* get(e, Ctor): T | undefined

Update (non-structural)

e set(e, Ctor, value): void Requires the component to exist; otherwise throws.

Structural changes
These may move the entity between archetypes:

* add(e, Ctor, value): void

* remove(e, Ctor): void

-40/77 - Copyright © 2026 Pirate]JL

4.3.5 Queries and component ordering
world.query(A, B, €) yields rows shaped like:

* e: the entity

* c1, c2, c3:component values in the same order as the ctor arguments
Example:

1 for (const { e, cl: pos, c2: vel } of world.query(Position, Velocity)) { }

4.3.5 Queries and component ordering

4.3.6 Safety rules during iteration

While iterating a query (or while systems are running), direct structural changes can throw. Use deferred commands instead:

* enqueue via world.cmd()

* apply via world.flush()

 January 4,2026

@ January 4,2026

-41/77 -

Copyright © 2026 PirateJL

4.4 Entity

4.4 Entity

4.4.1 Purpose

An Entity is a lightweight, opaque handle used to reference rows stored inside archetypes. It is not the data itself (components
hold the data).

4.4.2 Type

1 type Entity = { id: number; gen: number };

¢ id: stable numeric slot identifier

* gen: generation counter used to detect stale handles after despawn / reuse

4.4.3 Semantics
Identity
An entity handle is considered valid only if both:

e the id refers to an allocated slot

e the gen matches the current generation for that slot

Stale handles

If an entity is despawned and the id is later reused, the gen will differ. This prevents accidentally operating on “the new entity
that reused the same id”.

4.4.4 Where entities come from

e world.spawn() returns an Entity handle

e world.query(...) yields rows that include e: Entity

4.4.5 Where entities are used
Entities are passed into World operations (examples):

« lifecycle: despawn(e)
e components: add(e, Ctor, value), remove(e, Ctor), get(e, Ctor), set(e, Ctor, value)

* commands (deferred): cmd.despawn(e), cmd.add(e, ...), cmd.remove(e, ...)

4.4.6 Related behavior
Safety during iteration

When iterating query results (which contain e: Entity), structural changes should be deferred via commands and applied with
flush() .

-42/77 - Copyright © 2026 Pirate]JL

4.4.6 Related behavior

(S January 4, 2026

@ January 4, 2026

-43/77 - Copyright © 2026 PirateJL

4.5 Reference: Events API

4.5 Reference: Events API

4.5.1 Overview

Events are typed, transient messages used to decouple systems. They are stored per event type in double-buffered
channels:

* emit() appends to the write buffer (current phase)
e drain() / values() read from the read buffer (previous phase)

* At each phase boundary, world.swapEvents() swaps buffers so events become visible to the next phase

Key type

Event channels are keyed by componentCtor<T> (same as components/resources). Keys are compared by identity.

4.5.2 EventChannel<T> (Events.ts)
emit(ev: T): void

Appends an event to the write buffer for the current phase.
Notes

* Emitted events are not readable in the same phase

* They become readable after the next swapBuffers() / world.swapEvents()

drain(fn: (ev: T) => void): void
Iterates all readable events (read buffer) and then clears that buffer.
Semantics

* Reads only events emitted in the previous phase

e After drain, count() becomes ©
Performance

* No iterator allocations; uses indexed loop

¢ Clears with length = @

values(): readonly T[]
Returns a read-only view of the read buffer.
Semantics

* Snapshot is valid until the next boundary swap

* Do not store the returned array long-term

count(): number

Returns the number of readable events currently in the read buffer.

-44/77 - Copyright © 2026 Pirate]JL

4.5.3 Delivery model summary (phase-scoped)

clear(): void

Clears the read buffer only.

clearAll(): void

Clears both read and write buffers.

swapBuffers(): void (internal)
Swaps read/write buffers and clears the new write buffer.
Semantics

* Makes events emitted in the previous phase readable now

* Drops any undrained events from the prior read buffer at the next swap (phase-scoped delivery)

4.5.3 Delivery model summary (phase-scoped)
If you run phases:
A ->B ->C

Events emitted in A are readable in B. If not drained in B, they are dropped at B -> ¢ swap.

(€ January 13,2026

Q@ January 13,2026

-45/77 - Copyright © 2026 Pirate]JL

4.6 Non goals

4.6 Non goals

(@ January 4, 2026

Q@ January 4, 2026

-46/77 - Copyright © 2026 PirateJL

4.7 Query — Reference

4.7 Query — Reference

4.7.1 Purpose

A Query iterates all entities that have all required component types, efficiently by scanning only the matching archetypes
(tables).

4.7.2 API
world.query(...ctors): Iterable<any>
ctors is a list of component constructors (types) you want to require.

1 for (const row of world.query(Position, Velocity)) {
2 /7 .
3}

Queries yield rows shaped like:

e e:the Entity

* c1, c2, c3,...: component values in the same order as the ctors arguments

So query(A, B, C) yields { e, c1: A, c2: B, c3: C }.

4.7.3 Row mapping and ordering
Deterministic component fields
The mapping is positional:

* query(A) —» { e, c1}
* query(A, B) = { e, c1, c2 }

* query(A, B, C) - { e, c1, c2, c3 }

And cn always corresponds to the Nth constructor you passed.

4.7.4 Safety rules during iteration
While iterating a query (or while systems are running), structural changes (spawn/despawn/add/remove) can throw.
Use:

* world.cmd() to defer changes

* world.flush() (or world.update()) to apply them safely

4.7.5 Example
1 for (const { e, cil: pos, c2: vel } of world.query(Position, Velocity)) {
2 pos.x += vel.x;
3 pos.y += vel.y;
4
5 // Safe structural change: defer it
6 if (pos.x > 10) world.cmd().despawn(e);
7}

-47/77 - Copyright © 2026 Pirate]JL

4.7.5 Example

This pattern is recommended explicitly for queries.

C January 6,2026

@ January 4,2026

-48/77 - Copyright © 2026 Pirate]JL

4.8 Resources (Singletons / World Globals)

4.8 Resources (Singletons / World Globals)

Resources are typed singleton values stored on the world, keyed by a componentCtor<T> (same “key shape” as components).

They are not attached to entities.

They're ideal for global state like Time, Input, Asset caches, Config, RNG, Selection, etc.

4.8.1 Concepts
What is a Resource?
A resource is a single instance of data stored globally in the ECS wor1d .

 Components — many per world, attached to entities

* Resources — one per key, stored in the world

Key type: ComponentCtor<T>
All resource APIs use:

1 ComponentCtor<T>

This usually means:

* a class constructor (e.g. class TimeRes { ... })

 or a token function (unique function used as a key)

Keys are compared by identity (reference equality), not by name.

4.8.2 API summary
All methods live on world / worldApi .

setResource<T>(key: ComponentCtor<T>, value: T): void
getResource<T>(key: ComponentCtor<T>): T | undefined
requireResource<T>(key: ComponentCtor<T>): T
hasResource<T>(key: ComponentCtor<T>): boolean
removeResource<T>(key: ComponentCtor<T>): boolean
initResource<T>(key: ComponentCtor<T>, factory: () => T): T

o U A WN B

Structural safety: resource operations are not structural changes (unlike spawn/despawn/add/remove). They do not require

flushing and are safe to call during system execution.

4.8.3 Method reference

setResource<T>(key, value): void
Stores (or replaces) the resource value for key .
Behavior

e Overwrites any existing value.

* Does not flush and does not affect archetypes.

-49/77 -

Copyright © 2026 PirateJL

Example

1 class ConfigRes { constructor(public difficulty: "easy" | "hard") {} }

2
3 world.setResource(ConfigRes, new ConfigRes("hard"));

4.8.3 Method reference

getResource<T>(key): T | undefined
Returns the resource value if present, otherwise undefined .
Use when
* the resource is optional (debug tools, plugins, editor-only state)
Important note

* If you explicitly store undefined as the value, this also returns undefined .
* Use hasResource(key) to distinguish:

* “missing”

 vs “present but undefined”

Example

1 const debug = world.getResource(DebugRes);
2 if (debug) debug.enabled = true;

requireResource<T>(key): T
Returns the resource value if present, otherwise throws.
Use when
* the resource is required for correct operation (Time, Input, AssetCache, Config)
Throws
e Error if missing
Example

1 const input = w.requireResource(InputStateRes);
2 if (input.keysDown.has("KeyW")) { /* ... */ }

hasResource<T>(key): boolean
Checks whether an entry exists for key .
Use when

* you need to distinguish missing vs present-but-undefined

* you want conditional initialization
Example

1 if (!world.hasResource(TimeRes)) {
2 world.setResource(TimeRes, new TimeRes());

3}

- 50/77 -

Copyright © 2026 PirateJL

removeResource<T>(key): boolean
Removes the resource entry for key .
Returns

* true if the entry existed and was removed

e false otherwise
Example

1 wor ld. removeResource(DebugRes);

4.8.4 Usage patterns

initResource<T>(key, factory): T
Insert-once helper.

Behavior

« If resource exists — returns existing value (factory is not called)

* If missing — calls factory(), stores, returns the new value
Use when

* bootstrapping default resources without double-init
Example

1 class TimeRes { dt = 0; elapsed = 0; }

2
3 world.initResource(TimeRes, () => new TimeRes());

4.8.4 Usage patterns
Pattern: “bootstrap required resources once”

class TimeRes { dt = 0; elapsed = 0; }
class InputStateRes { keysDown = new Set<string>(); }

world.initResource(TimeRes, () => new TimeRes());
world.initResource(InputStateRes, () => new InputStateRes());

OA WN R

Pattern: “systems read required resources”

1 function timeSystem(w: WorldApi, dt: number) {
2 const time = w.requireResource(TimeRes);

3 time.dt = dt;

4 time.elapsed += dt;

5

3

Pattern: “asset cache resource”

class AssetCacheRes {
images = new Map<string, HTMLImageElement>();

1
2
3 1
4
5

world.initResource(AssetCacheRes, () => new AssetCacheRes());

-51/77 -

Copyright © 2026 PirateJL

4.8.5 Gotchas
1) Keys must be stable and unique
Because keys are identity-based:

* [class TimeRes {} used as key is stable
* [V a top-level const TOKEN = (() => {}) as ComponentCtor<T> is stable

» X creating a new token function inline each time won’t match previous entries

2) Prefer requireResource() in gameplay systems

It keeps systems clean and fails fast when initialization is missing.

3) Resources are not entities

Do not use resources for data that should exist per-entity (that’s components).

@ January 14,2026

@ January 9,2026

-52/77 -

4.8.5 Gotchas

Copyright © 2026 PirateJL

4.9 Schedule

4.9 Schedule

4.9.1 Purpose

Schedule is a phase runner: it groups systems under named phases, then runs those phases in a chosen order, calling
world.flush() between phases to apply deferred structural commands deterministically.

4.9.2 Construction

1 const sched = new Schedule();

Schedule is independent from world ; you pass the world (or compatible object) at run time.

4.9.3 Adding systems to phases
add(phase: string, fn: SystemFn): this
Registers a system function under a phase name.

* You can register multiple systems under the same phase.

Example:
al, sched
2 .add("input", (w: any) => { /* ... */ })
3 .add("sim", (w: any, dt) => { /* ... */ })
4 .add("render", (w: any) => { /* ... */ });

4.9.4 Running phases
run(world: WorldLike, dt: number, phases: string[]): void
Runs the schedule for a single tick:

* Executes phases in the exact order provided by phases .

e Calls world.flush() after each phase (phase barrier).
Example:

1 const phases = ["input", "sim", "render"];
2 sched.run(world, 1/60, phases);

4.9.5 Flush semantics

Schedule relies on world.flush() to apply deferred structural changes queued via commands, enabling safe structural edits while
systems and queries run.

4.9.6 Relationship to world.update(dt)

* world.update(dt) runs the world’s own registered systems and flushes at the end.

* schedule is used when you want explicit phase ordering and flush points between groups of systems rather than only at
frame end.

-53/77 - Copyright © 2026 Pirate]JL

4.9.6 Relationship to World.update(dt)

(S January 4, 2026

@ January 4, 2026

-54/77 - Copyright © 2026 PirateJL

4.10 Systems

4.10 Systems

4.10.1 Purpose

A system is a function executed by the ECS to update simulation state (usually by iterating queries and mutating component
values). Systems are registered on the world, and executed during world.update(dt) .

4.10.2 System function type

SystemFn

A system is a function with the signature:
¢ (world: WorldApi, dt: number) => void

In practice, examples call query() and cmd() inside systems, which are available through worldapi .

4.10.3 Registering systems

world.addSystem(fn): this

Adds a system to the world.
* Systems run in the order they were added (as described by “runs systems in order”).
Example:

1 world.addSystem((w: any, dt: number) => {
2 for (const { e, cil: pos, c2: vel } of w.query(Position, Velocity)) {
3 pos.x += vel.x * dt;

4 pos.y += vel.y * dt;
5

6

7

8

if (pos.x > 10) w.cmd().despawn(e);
}
3

4.10.4 Running systems (frame execution)
world.update(dt): void
Runs one ECS frame:

1. Runs all registered systems (in order)

2. Flushes queued commands at the end
The reference summary explicitly lists:

* addSystem(fn): this

* update(dt): void (runs systems in order, then flushes)

-55/77 - Copyright © 2026 Pirate]JL

4.10.5 Structural changes inside systems

4.10.5 Structural changes inside systems

While systems are running (and while iterating queries), doing structural changes directly can throw. The recommended pattern
is:

* enqueue structural changes with world.cmd()

* apply them with world.flush() (or let update() do it at the end)

4.10.6 Systems in phases (Schedule)
If you need explicit ordering across groups of systems, use Schedule :

* sched.add(phase, systemFn)

e sched.run(world, dt, phases) runs phases in order and calls world.flush() after each phase

This provides deterministic “phase barriers” where deferred commands are applied.

C January 6, 2026

@ January 4,2026

-56/77 - Copyright © 2026 Pirate]JL

4.11 World

4.11.1 Purpose

world is the central authority of the ECS. It owns and coordinates:

* entity lifecycle

e archetypes and component storage
* queries

 deferred structural commands

* system execution

There is exactly one world instance per ECS context.

4.11 World

4.11.2 Construction

1 const world = new World();

Side effects

* Initializes an empty entity pool
« Initializes archetype storage
* Initializes command buffer

¢ Initializes system list

4.11.3 Entity Lifecycle API
spawn(): Entity
Creates a new entity immediately.

* Allocates a new entity id
* Marks entity as alive

 Places entity in the empty archetype

1 const e = world.spawn();

spawnMany(...items: ComponentCtorBundleItem[]): Entity

Creates a new entity along with its initial components immediately.

e ...items: ComponentCtorBundleItem[] is the list of components to add to the newly created entity.

* Internally, it iterates over the items and calls add for each component.

- 57177 -

Copyright © 2026 PirateJL

4.11.4 Component API

despawn(e: Entity): void
Immediately removes an entity.

 Invalidates the entity handle (gen mismatch)
* Removes the entity from its archetype

e Frees the slot for reuse
Throws if:

* entity is stale or not alive

despawnMany(entities: Entity[]): void
Immediately removes multiple entities.

* entities: Entity[] is the list of entities to despawn.

* Internally, it iterates over the array and calls despawn(e) for each entity.

isAlive(e: Entity): boolean
Checks whether an entity handle is still valid.

1 if (world.isAlive(e)) { ... }

4.11.4 Component API

All component types are identified by constructor identity.

has<T>(e: Entity, ctor: ComponentCtor<T>): boolean

Checks if an entity has a component.

get<T>(e: Entity, ctor: ComponentCtor<T>): T | undefined
Returns the component value or undefined .

* Does not throw if missing

¢ Returns undefined for stale entities

add<T>(e: Entity, ctor: ComponentCtor<T>, value: T): void
Adds a component to an entity.

* Structural change

* Moves the entity to a different archetype
Throws if:

* entity is stale
e component already exists

« structural changes are forbidden (see iteration rules)

- 58/77 - Copyright © 2026 Pirate]JL

4.11.5 Query API

addMany(e: Entity, ...items: ComponentCtorBundleItem[]): void
Adding multiple components to an existing entity.

e e: Entity is the target entity.
e ...items: ComponentCtorBundleItem[] is the list of components to add.

* Internally, it loops through the items and calls add for each component.

remove<T>(e: Entity, ctor: ComponentCtor<T>): void
Removes a component.

e Structural change

* Moves the entity to a different archetype
Throws if:

* entity is stale

* component does not exist

e structural changes are forbidden

removeMany(e: Entity, ...ctors: ComponentCtor<any>[]): void
Removes multiple component types from an entity.

e e: Entity is the target entity.

e ...ctors: ComponentCtor<any>[] is the list of component constructors (types) to remove.

¢ Internally, it loops through the ctors and calls remove for each one.

set<T>(e: Entity, ctor: ComponentCtor<T>, value: T): void
Updates an existing component value.

¢ Non-structural

* Does not change archetypes
Throws if:

* entity is stale

* component does not exist

4.11.5 Query API

query(...ctors): Iterable<QueryRow>

Iterates entities that contain all requested components.

1 for (const { e, c1, c2 } of world.query(A, B)) {
2 // e -> Entity

2 // c1 -> A

4 // c2 -> B

S

- 59/77 -

Copyright © 2026 PirateJL

4.11.6 Structural Change Rules

PROPERTIES

« Iterates archetypes, not entities
e Components are returned as ci, c2, ... in argument order

* Query iteration locks structural changes

4.11.6 Structural Change Rules
While iterating a query or running systems:

o)(spawn, despawn, add, remove are forbidden

. y/ get, set, has are allowed

Violations throw a runtime error.

4.11.7 Command Buffer API

cmd(): Commands
Returns a command buffer for deferred structural changes.

1 world.cmd().despawn(e);

Commands are queued, not applied immediately.

flush(): void
Applies all queued commands.

e Safe to call after queries

* Automatically called by update() and schedule

4.11.8 System API

addSystem(fn: SystemFn): this
Registers a system.

1 world.addSystem((w, dt) => { ... });

Systems are executed in insertion order.

update(dt: number): void
Runs one ECS frame.
Execution order:

1. Run all systems

2. Flush deferred commands

1 world.update(1 / 60);

-60/77 - Copyright © 2026 Pirate]JL

4.11.9 Events API

4.11.9 Events API
emit<T>(key: ComponentCtor<T>, ev: T): void

Emits an event of type T into the current phase write buffer.

events<T>(key: ComponentCtor<T>): EventChannel<T>

Returns the event channel for key, creating it if missing.

drainEvents<T>(key: ComponentCtor<T>, fn: (ev: T) => void): void
Drains readable events for the given type.
Behavior

« If the channel doesn’t exist yet, it’s a no-op (does not allocate/create)

clearEvents<T>(key?: ComponentCtor<T>): void
Clears readable events.

o If key is provided: clears that event type’s read buffer

e If omitted: clears the read buffers of all event types

swapEvents(): void (internal / schedule boundary)

Swaps all event channels’ buffers. Called by schedule at phase boundaries.

Required schedule behavior At each phase boundary:

1 world.flush();
2 world. swapEvents();

4.11.10 Internal Guarantees

* Archetypes use Structure of Arrays (SoA)
» Entity handles are generation-safe
* Component lookups are O(1) per archetype row

* Queries are archetype-filtered, not entity-scanned

-61/77 -

Copyright © 2026 PirateJL

4.11.11 Error Conditions (Summary)

Operation
add / remove
add

remove

set

any

Error Condition

during query iteration
component already exists
component missing
component missing

stale entity

4.11.11 Error Conditions (Summary)

4.11.12 Design Constraints

* Single-threaded

¢ No automatic conflict detection

* No parallel systems

* No borrowing model

These are intentional for simplicity and predictability.

C January 13,2026

@ January 4,2026

-62/77 -

Copyright © 2026 PirateJL

5. Tutorials

5. Tutorials

5.1 Tutorial 1 — Your first ECS World

Outcome: you’ll run a tiny simulation loop where entities with Position + velocity move over time, using world, spawn, add,
query, addSystem, and update(dt) .

5.1.1 1) What is an ECS? (one sentence)

ECS is a way to build simulations where entities are IDs, components are data, and systems are functions that iterate
entities with specific components.

5.1.2 2) Create a tiny project

mkdir ecs-tutorial-1

cd ecs-tutorial-1

npm init -y

npm i archetype-ecs-1lib
npm i -D typescript tsx

OA WN R

Install is npm i archetype-ecs-1ib .

5.1.3 3) Create tutoriall.ts
Create a file named tutoriali.ts with this code:

import { World, WorldApi } from "archetype-ecs-1ib";

// 1) Components = data (any class can be a component type)
class Position { constructor(public x = 0, public y = 0) {} }
class Velocity { constructor(public x = @, public y = 0) {} }
// 2) Create a World (owns entities, components, systems)
const world = new World();

© 0 ~NO O A ®WNR

10 // 3) Spawn an entity and add components
11 const e = world.spawnMany (

A2 new Position(0, 0, 0),

13 new Velocity(2, 0)// 2 units/sec along x
14)

15

16 // 4) Add a system (runs each update)
17 world.addSystem((w, dt) => {

18 for (const { e, c1: pos, c2: vel } of w.query(Position, Velocity)) {
19 pos.x += vel.x * dt;

20 pos.y += vel.y * dt;

21 }

22 1)

23

24 // 5) Run a small simulation loop (60 frames)
25 const dt = 1 / 60;

26

27 for (let frame = 1; frame <= 60; frame++) {

28 world.update(dt);

29

30 // Read back Position and print it

31 const pos = world.get(e, Position)!

32 if (frame % 10 === 0) {

33 console.log(frame ${frame}: x=${pos.x.toFixed(2)} y=${pos.y.toFixed(2)}");
34 }

35 1}

-63/77 - Copyright © 2026 Pirate]JL

5.1.4 4) Run it

This uses the documented API:

* spawn(), add(e, Ctor, value)
¢ addSystem(fn)
e query(Position, Velocity) yielding { e, c1, c2 }

e update(dt) to run systems each tick

5.1.4 4) Run it

1 npx tsx tutoriall.ts

You should see something like:

e frame 10: x=0.33 ...

e frame 60: x=2.00 ...

(Your exact decimals may differ slightly depending on rounding.)

5.1.5 5) You've built the core loop
You now have:

* a world

* entities created with spawn()

e components added with add()
* a system iterating query(...)

* a running simulation driven by update(dt)

(January 8,2026

@ January 4,2026

- 64/77 - Copyright © 2026 Pirate]JL

5.2 Tutorial 2 — Components & archetypes

5.2 Tutorial 2 — Components & archetypes

Outcome: you’ll see how component sets automatically form archetypes (tables), and how entities “move” between them when

you add() / remove() components—without digging into internals. Archetypes store data in S0A (one column per component
type).

5.2.1 1) Define a few component types

Create tutorial2.ts:

The ECS uses component constructors as the “type key”, and archetypes store entities in SoA tables.

import { World } from "archetype-ecs-1ib";

// Components are just data classes
class Position { constructor(public
class Velocity { constructor(public
class Health { constructor(public

X = 0, public y
X = 0, public y
hp = 100) {} }

0) {3}
0) {3}

5.2.2 2) Create a World and spawn entities with different component sets

© 0 ~NO O A ®WNR

11
12
13
14

const world = new World();

// el has: Position
const el = world.spawn();

world.add(el, Position, new Position(1, 1));

// e2 has: Position + Velocity
const e2 = world.spawn();

world.add(e2, Position, new Position(0, 0));
world.add(e2, Velocity, new Velocity(1, 0));

// €3 has: Health
const e3 = world.spawn();

world.add(e3, Health, new Health(50));

5.2.3 3) Add a tiny helper to “see” matches

We can’t (and don’t need to) access archetype tables directly. Instead, we observe which queries match, before and after

structural changes.

1 function ids(iter: Iterable<{ e: { id: number } }>): number[] {
2 const out: number[] = [];
3 for (const row of iter) out.push(row.e.id);
4 return out.sort((a, b) => a - b);
5 1
6
7 function dump(label: string) {
8 console. log("\n=== ${label} ===");
9 console. log("Position:", ids(world.query(Position)))
10 console.log("Velocity:", ids(world.query(Velocity)))
11 console.log("Health: ", ids(world.query(Health)));
12 console. log("Pos+Vvel: ", ids(world.query(Position, Velocity)));
13 console.log("Pos+HP: ", ids(world.query(Position, Health)));
14}
The query APIyields { e, c1, c2, ... } rows in the order you request components.

- 65/77 -

Copyright © 2026 PirateJL

5.2.4 4) Observe the “automatic archetypes” effect

5.2.4 4) Observe the “automatic archetypes” effect
Add this and run once:

1 dump("initial");

You’ll see (by IDs) that:

* e1 matches position only
e e2 matches both position and Pos+vel
* e3 matches Health only

What this demonstrates: entities with the same component set are stored together (same archetype). Archetypes are created
implicitly as you introduce new component combinations.

5.2.5 5) Make an entity “move” between archetypes (add)
Now add a component to ei1:

1 world.add(el, Velocity, new Velocity(0, 2));
2 dump("after: add Velocity to el");

You should see:

* el now appears in Velocity

e and also in Pos+vel

Why: add() is a structural change that can move an entity into a different archetype table (because its component set
changed).

5.2.6 6) Make an entity “move” between archetypes (remove)
Now remove Position from e2:

1 world.remove(e2, Position);
2 dump("after: remove Position from e2");

You should see:

* e2 disappears from Position and Pos+vel

* e2 still appears in velocity

Again: remove() is structural and can move the entity to a new archetype.

5.2.7 7) Run it

1 npx tsx tutorial2.ts

5.2.8 What you just learned (by doing)

* Components are plain data types (classes).

* Archetypes (tables) are created automatically for each distinct component set, stored in SoA layout.

-66/77 - Copyright © 2026 Pirate]JL

5.2.8 What you just learned (by doing)

* When you add() / remove() components, entities “move” because their component set changes (structural change).

Note for later tutorials: structural changes can be unsafe while iterating; that’s why cmd() + flush() exist.

(S January 14,2026

@ January 4,2026

-67/77 - Copyright © 2026 PirateJL

5.3 Tutorial 3 — Deferred structural changes

5.3 Tutorial 3 — Deferred structural changes

Outcome: you’ll learn the one rule that prevents most ECS bugs: don’t change entity structure while iterating. You'll
reproduce the problem safely, then fix it using Commands and flush points (via schedule). The library explicitly supports this
workflow: defer structural operations with world.cmd() and apply them with world.flush() / Schedule phase boundaries.

5.3.11) Create tutorial4.ts

1 import { World, WorldApi, Schedule } from "archetype-ecs-1lib";

5.3.2 2) Define simple components

1 class Position { constructor(public x
2 class Velocity { constructor(public x

0) {3}
0) {3 }

5.3.3 3) Setup: spawn a few movers

1 const world = new World();

2

B function spawnMover(x: number, vx: number) {
4 const e = world.spawn();

5 world.add(e, Position, new Position(x));
6 world.add(e, Velocity, new Velocity(vx));
7 return e;

8 1}

9
10 SpawnMover (0, 2);
11 SpawnMover (5, -3);
12 spawnMover (9, 1);

This is standard structural usage: spawn() + add() .

5.3.4 4) The unsafe thing (don’t do this)

Add this function:

const unsafeDespawnInsideQuery: SystemFn = (w: WorldApi) => {

for (const { e, cl: pos } of w.query(Position)) {
if (pos.x > 8) {

w.despawn(e);
}
}
}

1
2
S
4 /7 Structural change during iteration (may throw)
S
6
7
8

Now call it once (inside a try/catch so the tutorial keeps going):

1 try {

2 unsafeDespawnInsideQuery(world);

B console. log("unsafe: no error (but still not safe)");

4 } catch (err: any) {

5 console. log("unsafe: error as expected ->", String(err.message ?? err));
6 1

The lib will warn that structural changes during query iteration can throw and instructs to use cmd() + flush() instead.

-68/77 -

Copyright © 2026 PirateJL

5.3.5 5) The safe fix: use Commands

5.3.5 5) The safe fix: use Commands

Replace the unsafe function with a safe one:

}
}

1 const safeDespawnInsideQuery: SystemFn = (w: WorldApi) => {

2 for (const { e, cl1l: pos } of w.query(RenderContextComponent)) {
3 if (pos.x > 8) {

4 // Defer structural change

5 w.cmd().despawn(e);

6

7

8

-

Commands let you queue:

* spawn, despawn, add, remove

5.3.6 6) Apply commands at a flush point
Option A — Manual flush

1 safeDespawnInsideQuery(world);
2 world.flush(); // apply queued despawns

flush() applies queued commands (and update() also flushes automatically at the end).

Option B — Flush at phase boundaries (recommended)

Use schedule, which flushes after each phase:

1 const sched = new Schedule();

2

3 sched.add("sim", (w: WorldApi) => {

4 // move

5 for (const { cl: pos, c2: vel } of w.query(Position, Velocity)) {
6 pos.x += vel.x;

7 }

8 1)i

9

10 sched.add("cleanup", (w: WorldApi) => {

il // safely despawn based on updated positions
A2 safeDespawnInsideQuery(w);

13 1)

14

15 // Flush happens after each phase automatically
16 const phases = ["sim", "cleanup"];

Schedule.run(world, dt, phases) runs phases and calls world.flush() after each phase.

5.3.7 7) Run a few ticks and print what's left

Add a small logger:

1 function logPositions(w: WorldApi, label: string) {
2 const items: string[] = [];
3 for (const { e, c1: pos } of w.query(Position)) {
4 items.push(e${e.id}:${pos.x.toFixed(1)}");
5 }
6 console.log(label, items.join(" | ") || "(none)");
7}

Now run:

logPositions(world, "before");

for (let i = 0; 1 < 5; i++) {
sched.run(world, ©, phases);
logPositions(world, ‘after tick ${i + 1}")
}

o U R ®WN R

-69/77 - Copyright © 2026 Pirate]JL

5.3.8 8) Full file (copy/paste)

5.3.8 8) Full file (copy/paste)

1 import { World, Schedule } from "archetype-ecs-1lib";
2

3 class Position { constructor(public x = 0) {} }
4 class Velocity { constructor(public x = @) {} }
5

6 const world = new World();

7

g function spawnMover(x: number, vx: number) {

9 const e = world.spawn();
10 world.add(e, Position, new Position(x));
11 world.add(e, Velocity, new Velocity(vx));
12 return e;
13}
14

15 spawnMover (0, 2);
16 spawnMover(5, -3);
17 spawnMover(9, 1);

18

19 const unsafeDespawnInsideQuery: SystemFn = (w) => {
20 for (const { e, cl: pos } of w.query(Position)) {
21 if (pos.x > 8) {

29 w.despawn(e); //)< may throw

23 }

24 }

25 }

26

27 try {

28 unsafeDespawnInsideQuery(world as any);

29 console.log("unsafe: no error (but still not safe)");
30) catch (err: any) {

31 console. log("unsafe: error as expected ->", String(err.message ?? err));
32 1

33

34 const safeDespawnInsideQuery: SystemFn = (w) => {

35 for (const { e, cl1: pos } of w.query(Position)) {
36 if (pos.x > 8) w.cmd().despawn(e); // deferred
37 3

38 1}

39

40 function logPositions(w: WorldApi, label: string) {
41 const items: string[] = [];

42 for (const { e, c1: pos } of w.query(Position)) {
43 items.push(e${e.id}:${pos.x.toFixed(1)}");

44 }

45 console.log(label, items.join(" | ") || "(none)");
46}

a7

48 const sched = new Schedule();

49

50 sched.add("sim", (w: WorldApi) => {

51 for (const { cl: pos, c2: vel } of w.query(Position, Velocity)) {
52 pos.x += vel.x;

58 3

54 1);

55

56 sched.add("cleanup", (w: WorldApi) => {

57 safeDespawnInsideQuery(w);

58 1});

59

60 const phases = ["sim", "cleanup"];

61

62 logPositions(world, "before");

63 for (let i = 0; i <5; i++) {

64 sched.run(world, ©, phases); // flush after each phase
65 logPositions(world, “after tick ${i + 1}7);

66 1}

5.3.9 9) Run it

1 npx tsx tutorial4.ts

You'll see:

* the unsafe version may throw (depending on timing/guarding)

* the safe version consistently despawns entities after they cross the threshold

* phase flush points make the timing predictable

-70/77 -

Copyright © 2026 PirateJL

5.3.99) Run it

(S January 14,2026

@ January 4, 2026

-71/77 - Copyright © 2026 PirateJL

5.4 Tutorial 4 — Writing systems

5.4 Tutorial 4 — Writing systems

Outcome: you’ll write real gameplay logic as systems: query components, mutate data safely, and run everything through a
Schedule (input - sim - cleanup) with automatic flush() between phases.

5.4.1 1) Create tutorial3.ts

1 import { world, worldApi, Schedule, SystemFn } from "archetype-ecs-1ib";

The lib exports world and schedule .

5.4.2 2) Define components (data only)

1 class Position { constructor(public x
2 class Velocity { constructor(public x

=0, public y = 0) {} }
=0, public y = 0) {} }

3

class Lifetime { constructor(public seconds = 1.0) {} } // despawn when <= 0

5.4.3 3) Create a World and spawn a few entities

1 const world = new World();

2

3 function spawnMover(x: number, y: number, vx: number, vy:
4 const e = world.spawn();

5 world.add(e, Position, new Position(x, y));

6 world.add(e, Velocity, new Velocity(vx, vy));
7 world.add(e, Lifetime, new Lifetime(life));

8 return e;

9 1}
10
11 spawnMover (0, 0, 2, 0, 1.2);
12 spawnMover(0, 1, 1, 0, 2.5);
13 spawnMover (0, 2, -1, 0, 0.8);

life = 2.0) {

This uses the documented structural ops: spawn() and add() .

5.4.4 4) System function signature (what you write)

A system is a function called like:

* (world, dt) => void

Systems are added using world.addSystem() like world.addSystem((w: WorldApi, dt: number) => ...

In this tutorial we’ll register systems on a schedule (phases), but the function shape is the same.

5.4.5 5) Write your first real system: movement

This system queries Position + Velocity and updates positions.

1 const movementSystem: SystemFn = (w: WorldApi, dt: number) => {
2 for (const { cl: pos, c2: vel } of w.query(Position, Velocity)) {
) pos.x += vel.x * dt;
4 pos.y += vel.y * dt;
5 }
6 1
Query rows provide { e, c1, c2, ... } inthe same order as the query arguments.

-72/77 -

Copyright © 2026 PirateJL

5.4.6 6) Mutating data safely: despawn using commands

5.4.6 6) Mutating data safely: despawn using commands
Despawning is a structural change, so do it through cmd() inside systems.

1 const lifetimeSystem: SystemFn = (w: WorldApi, dt: number) => {
2 for (const { e, cil: life } of w.query(Lifetime)) {

3 life.seconds -= dt;

4 if (life.seconds <= 0) {

5 w.cmd().despawn(e); // safe: deferred

6 }

7 }

8 1}

5.4.7 7) Add a small “cleanup / log” system

We’ll print positions so you can see it running. This does not do structural changes.

1 const logSystem: SystemFn = (w: WorldApi, dt: number) => {

2 const lines: string[] = [];

3 for (const { e, cl: pos } of w.query(Position)) {

4 lines.push(e${e.id} @ (${pos.x.toFixed(2)}, ${pos.y.toFixed(2)}));
5

6 console.log(frame ${frame}: ${lines.join(" | ")});

7}

5.4.8 8) Run systems via Schedule (phases)

1. Create a schedule
2. Register systems under phases

3. Run phases each tick

1 const sched = new Schedule();

2

3 sched.add("sim", movementSystem);

4 sched.add("sim", lifetimeSystem);

)

6 // log in a separate phase so structural changes are already flushed
7 let frameNo = 0;

g sched.add("cleanup", (w: WorldApi) => {
9 frameNo++;

10 logSystem(w, frameNo);

1 1)

12

13 const phases = ["sim", "cleanup"];

Schedule.run(world, dt, phases) runs phases in order and calls world.flush() after each phase.

5.4.9 9) Run the loop

1 const dt = 1 / 10; // bigger dt so it’s easy to see
2 for (let i = 0; 1 < 20; i++) {

3 sched.run(world, dt, phases)

4}

-73/77 - Copyright © 2026 Pirate]JL

5.4.10 10) Full file (copy/paste)

{3

import { World, WorldApi Schedule, SystemFn } from "archetype-ecs-1ib";

0) {}}
0) {33
}

vy: number, life = 2.0) {

number) => {

${pos.y.toFixed(2)})");

1

2

3 class Position { constructor(public x = 0, public y
4 class Velocity { constructor(public x = @, public y
5 class Lifetime { constructor(public seconds = 1.0)

6

7 const world = new World();

8

9 function spawnMover(x: number, y: number, vx: number,
10 const e = world.spawn();
A9l world.add(e, Position, new Position(x, y));
12 world.add(e, Velocity, new Velocity(vx, vy));
s world.add(e, Lifetime, new Lifetime(life));
14 return e;
15}
16
17 spawnMover (0, 6, 2, 0, 1.2);
18 SpawnMover(0, 1, 1, 0, 2.5);
19 spawnMover (0, 2, -1, 0, 0.8);
20
21 const movementSystem: SystemFn = (w: WorldApi, dt:
22 for (const { cl: pos, c2: vel } of w.query(Position, Velocity)) {
23 pos.x += vel.x * dt;
24 pos.y += vel.y * dt;
25 }
26 1
27
28 const lifetimeSystem: SystemFn = (w: WorldApi, dt: number) => {
29 for (const { e, ci: life } of w.query(Lifetime)) {
30 life.seconds -= dt;
31 if (life.seconds <= 0) w.cmd().despawn(e);
32 }
33 1}
34
35 const logSystem: SystemFn = (w: WorldApi, dt: number) => {
36 const lines: string[] = [];
37 for (const { e, cl: pos } of w.query(Position)) {
38 lines.push(e${e.id} @ (${pos.x.toFixed(2)}
39 }
40 console.log(frame ${frame}: ${lines.join(" | ")});
41}
42
43 const sched = new Schedule();
44 sched.add("sim", movementSystem);
45 sched.add("sim", lifetimeSystem);
46
a7 let frameNo = 0;
48 sched.add("cleanup", (w: WorldApi) => {
49 frameNo++;
50 logSystem(w, frameNo);
51 1});
52
53 const phases = ["sim", "cleanup"];
54
55 const dt =1 / 10;
56 for (let i = 0; i < 20; i++) {
57 sched.run(world, dt, phases);
58 1}

5.4.10 10) Full file (copy/paste)

5.4.11 11) Run it

1 npx tsx tutorial3.ts

You’ll see entities moving, then disappearing as their

(S January 14,2026

@ January 4,2026

- 74177 -

Lifetime reaches O (despawned safely via commands + phase flush).

Copyright © 2026 Pirate]L

5.5 Tutorial 5 — ECS + Three.js (render-sync + safe spawn/despawn)

5.5 Tutorial 5 — ECS + Three.js (render-sync + safe spawn/despawn)

Outcome: you’ll see moving cubes in Three.js. You'll also spawn new cubes on click and despawn them safely using cmd() +

phase flush boundaries (via Schedule).

5.5.1 1) Create a new project

o g R ®WN R

mkdir ecs-threejs-tutorial
cd ecs-threejs-tutorial
npm init -y

npm i archetype-ecs-1lib three
npm i -D vite typescript

The ECS package is installed as archetype-ecs-1lib .

5.5.22) Add index.html

Create index.html:

© 0N O A ®N R

NNNRERRRERRRBRB B
NROO®ONoos»wwNR

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>ECS + Three.js Tutorial</title>
<style>
html, body { margin: @; height: 100%; overflow: hidden; }
#hud {
position: fixed; left: 12px; top: 12px;
padding: 8px 10px; border-radius: 8px;
background: rgba(e,0,0,0.55); color: #fff;
font-family: system-ui, sans-serif; font-size: 13px;
user-select: none;
}
</style>
</head>
<body>
<div id="hud">Click to spawn cubes</div>
<script type="module" src="/src/main.ts"></script>
</body>
</html>

- 75177 -

Copyright © 2026 PirateJL

5.5.3 3) Add src/main.ts

5.5.33)Add src/main.ts

Create src/main.ts:

-76/77 - Copyright © 2026 PirateJL

© O NN ®WN R

© © © © ©OE®M®PROPEMPDANNNNNNNNNNODDODDDODDOODND WU UGG O OOOEDSBRDNDNDEDNDDADN®KLOEONOOONNNNNNNNNNERRRRR B R R B
EONPFPOO®O®NOURNWNNRL,OOONDODUNAWNROOOINDARWMNROOXI®RINDITIDRWXINFROOO®NODTR®O®NFRFOO®IODOREWNRL,OOONOUAWNR©O®O~NDOAWRNRO

- 77177 -

5.5.3 3) Add src/main.ts

Copyright © 2026 Pirate]L

	Archetype ECS lib Documentation
	1. Archetype ECS Lib
	1.1 Install
	1.2 Quick start
	1.3 Notes & limitations
	1.4 License

	2. Explanation
	2.1 ECS and the game loop
	2.1.1 Frame phases
	2.1.2 Where ECS fits
	A concrete mapping using this primitives

	2.1.3 Why ECS does not replace rendering, input, or physics engines
	Rendering
	Input
	Physics

	2.1.4 The key idea: ECS is the coordination model

	2.2 Integrating an ECS with Three.js
	2.2.1 The mental model: ECS drives state, Three.js draws it
	2.2.2 Where ECS fits in the Three.js render loop
	2.2.3 Why flush points matter for Three.js integration
	2.2.4 A clean integration pattern: “Renderable bridge” components
	2.2.5 One-way vs two-way sync (pick a source of truth)
	2.2.6 Why ECS does not replace Three.js (and shouldn’t try)
	2.2.7 Scaling tips (when entity counts grow)

	2.3 What people mean by a “full ECS”
	2.3.1 ECS as architecture, not just storage
	Storage-only ECS (not “full”)
	Architecture ECS (“full ECS”)

	2.3.2 Difference between a library ECS and an engine ECS
	Library ECS
	Engine ECS (Bevy / Unity DOTS / etc.)

	2.4 Why archetype ECS?
	2.4.1 Cache locality
	2.4.2 Branch elimination (and “no-join” iteration)
	2.4.3 Predictable iteration
	2.4.4 Comparison with sparse-set ECS
	Rule of thumb

	2.4.5 The real trade-off (why it’s not “always archetypes”)

	2.5 Why deferred commands exist in an archetype ECS
	2.5.1 Archetypes are tables, and queries walk those tables
	2.5.2 The core problem: structural changes move entities between tables
	2.5.3 Why it’s unsafe to do structural changes during a query
	1) Swap-remove can invalidate the current row
	2) Moving entities changes which archetypes match
	3) Internal indices can become stale mid-loop

	2.5.4 Deferred commands are the solution: separate “read/iterate” from “mutate structure”
	2.5.5 Why flushing in phases is architecturally important
	2.5.6 What you gain by deferring
	Correctness
	Determinism
	Performance

	2.5.7 What to do inside a system
	2.5.8 Summary: the “why” in one sentence

	2.6 Why use Events in ECS?
	2.6.1 Events solve a different problem than Components and Resources
	2.6.2 Events reduce coupling between systems
	2.6.3 Why double-buffering?
	2.6.4 Why phase-scoped delivery?
	2.6.5 Trade-offs (and the forwarding pattern)

	3. How To Guides
	3.1 How to add InputState + AssetCache as Resources and use them in systems
	3.1.1 Goal
	Example InputStateRes
	Example AssetCacheRes

	3.1.2 1) Register the resources at startup
	3.1.3 2) Wire DOM events into InputStateRes
	3.1.4 3) Reset “pressed/released” flags once per frame
	3.1.5 4) Read input from systems
	3.1.6 5) Use AssetCacheRes in a render system (deduped async loads)
	3.1.7 6) Run phases in order
	3.1.8 Common variations
	Optional resource usage
	Preload assets (menu/loading screen)

	3.2 How to add/remove components at runtime
	3.3 How to despawn entities safely
	3.4 How to have multiple Worlds (globe vs ground simulation)
	3.5 How to integrate ECS into a game loop
	3.5.1 Option A — Use world.update(dt)
	3.5.2 Option B — Use Schedule phases (recommended for games)

	3.6 How to run logic conditionally
	3.6.1 Option A — Guard inside the system (simple)
	3.6.2 Option B — Conditional phases (skip whole groups)
	3.6.3 Option C — Wrap systems (reuse predicates)

	3.7 How to split logic into multiple system phases
	3.8 How to use ECS alongside Three.js
	3.8.1 Pattern: ECS owns state, Three.js owns objects

	3.9 How to use Events to decouple systems across phases
	3.9.1 Goal
	3.9.2 1) Define event types
	3.9.3 2) Emit events from a producer system
	3.9.4 3) Consume events in the next phase
	3.9.5 4) Deliver events to late phases (forwarding pattern)
	3.9.6 5) Use events(key).values() for read-only inspection
	3.9.7 6) Clear events when resetting state

	4. Reference
	4.1 Archetypes
	4.1.1 Purpose
	4.1.2 Storage model
	Table layout (SoA)

	4.1.3 Archetype membership
	Structural changes move entities between archetypes

	4.1.4 Queries and archetypes
	Archetype filtering
	Query row shape

	4.1.5 Safety constraints
	Structural changes during iteration

	4.1.6 Visibility / Public API

	4.2 Commands
	4.2.1 Purpose
	4.2.2 How to obtain a Commands buffer
	world.cmd(): Commands

	4.2.3 Supported operations
	spawn(init?)
	spawnBundle(...items: ComponentCtorBundleItem[])
	despawn(e: Entity)
	despawnBundle(entities: Entity[])
	add(e, ctor, value)
	addBundle(e: Entity, ...items: ComponentCtorBundleItem[])
	remove(e, ctor)
	removeBundle(e: Entity, ...ctors: ComponentCtor<any>[])

	4.2.4 Applying commands
	world.flush(): void
	With Schedule

	4.2.5 Safety rule

	4.3 Components
	4.3.1 Purpose
	4.3.2 Component “type” (key)
	TypeId mapping

	4.3.3 Component “value”
	4.3.4 World operations on components
	Presence / access
	Update (non-structural)
	Structural changes

	4.3.5 Queries and component ordering
	4.3.6 Safety rules during iteration

	4.4 Entity
	4.4.1 Purpose
	4.4.2 Type
	4.4.3 Semantics
	Identity
	Stale handles

	4.4.4 Where entities come from
	4.4.5 Where entities are used
	4.4.6 Related behavior
	Safety during iteration

	4.5 Reference: Events API
	4.5.1 Overview
	Key type

	4.5.2 EventChannel<T> (Events.ts)
	emit(ev: T): void
	drain(fn: (ev: T) => void): void
	values(): readonly T[]
	count(): number
	clear(): void
	clearAll(): void
	swapBuffers(): void (internal)

	4.5.3 Delivery model summary (phase-scoped)

	4.6 Non goals
	4.7 Query — Reference
	4.7.1 Purpose
	4.7.2 API
	world.query(...ctors): Iterable<any>

	4.7.3 Row mapping and ordering
	Deterministic component fields

	4.7.4 Safety rules during iteration
	4.7.5 Example

	4.8 Resources (Singletons / World Globals)
	4.8.1 Concepts
	What is a Resource?
	Key type: ComponentCtor<T>

	4.8.2 API summary
	4.8.3 Method reference
	setResource<T>(key, value): void
	getResource<T>(key): T | undefined
	requireResource<T>(key): T
	hasResource<T>(key): boolean
	removeResource<T>(key): boolean
	initResource<T>(key, factory): T

	4.8.4 Usage patterns
	Pattern: “bootstrap required resources once”
	Pattern: “systems read required resources”
	Pattern: “asset cache resource”

	4.8.5 Gotchas
	1) Keys must be stable and unique
	2) Prefer requireResource() in gameplay systems
	3) Resources are not entities

	4.9 Schedule
	4.9.1 Purpose
	4.9.2 Construction
	4.9.3 Adding systems to phases
	add(phase: string, fn: SystemFn): this

	4.9.4 Running phases
	run(world: WorldLike, dt: number, phases: string[]): void

	4.9.5 Flush semantics
	4.9.6 Relationship to World.update(dt)

	4.10 Systems
	4.10.1 Purpose
	4.10.2 System function type
	SystemFn

	4.10.3 Registering systems
	world.addSystem(fn): this

	4.10.4 Running systems (frame execution)
	world.update(dt): void

	4.10.5 Structural changes inside systems
	4.10.6 Systems in phases (Schedule)

	4.11 World
	4.11.1 Purpose
	4.11.2 Construction
	Side effects

	4.11.3 Entity Lifecycle API
	spawn(): Entity
	spawnMany(...items: ComponentCtorBundleItem[]): Entity
	despawn(e: Entity): void
	despawnMany(entities: Entity[]): void
	isAlive(e: Entity): boolean

	4.11.4 Component API
	has<T>(e: Entity, ctor: ComponentCtor<T>): boolean
	get<T>(e: Entity, ctor: ComponentCtor<T>): T | undefined
	add<T>(e: Entity, ctor: ComponentCtor<T>, value: T): void
	addMany(e: Entity, ...items: ComponentCtorBundleItem[]): void
	remove<T>(e: Entity, ctor: ComponentCtor<T>): void
	removeMany(e: Entity, ...ctors: ComponentCtor<any>[]): void
	set<T>(e: Entity, ctor: ComponentCtor<T>, value: T): void

	4.11.5 Query API
	query(...ctors): Iterable<QueryRow>
	Properties

	4.11.6 Structural Change Rules
	4.11.7 Command Buffer API
	cmd(): Commands
	flush(): void

	4.11.8 System API
	addSystem(fn: SystemFn): this
	update(dt: number): void

	4.11.9 Events API
	emit<T>(key: ComponentCtor<T>, ev: T): void
	events<T>(key: ComponentCtor<T>): EventChannel<T>
	drainEvents<T>(key: ComponentCtor<T>, fn: (ev: T) => void): void
	clearEvents<T>(key?: ComponentCtor<T>): void
	swapEvents(): void (internal / schedule boundary)

	4.11.10 Internal Guarantees
	4.11.11 Error Conditions (Summary)
	4.11.12 Design Constraints

	5. Tutorials
	5.1 Tutorial 1 — Your first ECS World
	5.1.1 1) What is an ECS? (one sentence)
	5.1.2 2) Create a tiny project
	5.1.3 3) Create tutorial1.ts
	5.1.4 4) Run it
	5.1.5 5) You’ve built the core loop

	5.2 Tutorial 2 — Components & archetypes
	5.2.1 1) Define a few component types
	5.2.2 2) Create a World and spawn entities with different component sets
	5.2.3 3) Add a tiny helper to “see” matches
	5.2.4 4) Observe the “automatic archetypes” effect
	5.2.5 5) Make an entity “move” between archetypes (add)
	5.2.6 6) Make an entity “move” between archetypes (remove)
	5.2.7 7) Run it
	5.2.8 What you just learned (by doing)

	5.3 Tutorial 3 — Deferred structural changes
	5.3.1 1) Create tutorial4.ts
	5.3.2 2) Define simple components
	5.3.3 3) Setup: spawn a few movers
	5.3.4 4) The unsafe thing (don’t do this)
	5.3.5 5) The safe fix: use Commands
	5.3.6 6) Apply commands at a flush point
	Option A — Manual flush
	Option B — Flush at phase boundaries (recommended)

	5.3.7 7) Run a few ticks and print what’s left
	5.3.8 8) Full file (copy/paste)
	5.3.9 9) Run it

	5.4 Tutorial 4 — Writing systems
	5.4.1 1) Create tutorial3.ts
	5.4.2 2) Define components (data only)
	5.4.3 3) Create a World and spawn a few entities
	5.4.4 4) System function signature (what you write)
	5.4.5 5) Write your first real system: movement
	5.4.6 6) Mutating data safely: despawn using commands
	5.4.7 7) Add a small “cleanup / log” system
	5.4.8 8) Run systems via Schedule (phases)
	5.4.9 9) Run the loop
	5.4.10 10) Full file (copy/paste)
	5.4.11 11) Run it

	5.5 Tutorial 5 — ECS + Three.js (render-sync + safe spawn/despawn)
	5.5.1 1) Create a new project
	5.5.2 2) Add index.html
	5.5.3 3) Add src/main.ts

