
Archetype ECS lib

Documentation

La gestion de contenu intégrée

PirateJL

Copyright © 2026 PirateJL

Table of contents

41. Archetype ECS Lib

41.1 Install

41.2 Quick start

41.3 Notes & limitations

51.4 License

62. Explanation

62.1 ECS and the game loop

92.2 Integrating an ECS with Three.js

122.3 What people mean by a “full ECS”

142.4 Why archetype ECS?

172.5 Why deferred commands exist in an archetype ECS

202.6 Why use Events in ECS?

223. How To Guides

223.1 How to add InputState + AssetCache as Resources and use them in systems

263.2 How to add/remove components at runtime

273.3 How to despawn entities safely

283.4 How to have multiple Worlds (globe vs ground simulation)

293.5 How to integrate ECS into a game loop

303.6 How to run logic conditionally

313.7 How to split logic into multiple system phases

323.8 How to use ECS alongside Three.js

333.9 How to use Events to decouple systems across phases

354. Reference

354.1 Archetypes

374.2 Commands

404.3 Components

424.4 Entity

444.5 Reference: Events API

464.6 Non goals

474.7 Query — Reference

494.8 Resources (Singletons / World Globals)

534.9 Schedule

554.10 Systems

574.11 World

Table of contents

- 2/77 - Copyright © 2026 PirateJL

635. Tutorials

635.1 Tutorial 1 — Your first ECS World

655.2 Tutorial 2 — Components & archetypes

685.3 Tutorial 3 — Deferred structural changes

725.4 Tutorial 4 — Writing systems

755.5 Tutorial 5 — ECS + Three.js (render-sync + safe spawn/despawn)

Table of contents

- 3/77 - Copyright © 2026 PirateJL

1. Archetype ECS Lib

A tiny archetype based ECS (Entity Component System) for TypeScript.

This documentation is split into 4 parts :

Explanation of the general operation of the library

Find information in the Reference

Target a specific goal using the How-To Guides

Learn through the Tutorials: step-by-step guidance

1.1 Install

NPM package available here

1.2 Quick start

Note: SystemFn is typed as (world: WorldApi, dt) => void .

Checkout the tutorials for more!

1.3 Notes & limitations

This is intentionally minimal: no parallelism, no borrow-checking, no automatic conflict detection.

Query results use c1/c2/... fields for stability and speed; you can wrap this in helpers if you prefer tuple returns.

TypeId assignment is process-local and based on constructor identity (WeakMap).

coveragecoverage 99.22%99.22%

•

•

•

•

1 npm i archetype-ecs-lib

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

import { World, Schedule } from "archetype-ecs-lib";

class Position { constructor(public x = 0, public y = 0) {} }
class Velocity { constructor(public x = 0, public y = 0) {} }

const world = new World();

// Spawn immediately
const e = world.spawn();
world.add(e, Position, new Position(0, 0));
world.add(e, Velocity, new Velocity(1, 0));

// A simple system
world.addSystem((w) => {

for (const { e, c1: pos, c2: vel } of w.query(Position, Velocity)) {
pos.x += vel.x * dt;
pos.y += vel.y * dt;

// Defer structural changes safely
if (pos.x > 10) w.cmd().despawn(e);

}
});

world.update(1 / 60);

•

•

•

1. Archetype ECS Lib

- 4/77 - Copyright © 2026 PirateJL

https://www.npmjs.com/package/archetype-ecs-lib

1.4 License

This code is distributed under the terms and conditions of the MIT license.

January 6, 2026

January 3, 2026

1.4 License

- 5/77 - Copyright © 2026 PirateJL

https://github.com/PirateJL/archetype-ecs-lib/blob/master/LICENSE

2. Explanation

2.1 ECS and the game loop

ECS is best understood as the way you organize game state and game logic, not as the thing that does everything. In a

typical game, the loop still has input, rendering, audio, physics, networking, etc. ECS provides a consistent place for runtime

data (components) and behavior (systems), plus a schedule that defines when that behavior runs. This library already models

this explicitly with World.update(dt) and with a phase-based Schedule that flushes between phases.

2.1.1 Frame phases

A “frame” is rarely just “update then draw”. Most games are structured in phases, even if informally. A common conceptual

breakdown:

Input: read devices/events, translate into game intent

Simulation: movement, AI, gameplay rules, timers

Physics (optional separate step): integrate, solve collisions, constraints

Post-sim: resolve gameplay outcomes, spawn/despawn, apply state transitions

Render prep: build renderable data, sort, cull

Render: submit to GPU / engine renderer

End-of-frame: cleanup, present frame, etc.

The Schedule is designed exactly for this idea: you define phases (strings) and run them in order, with flush() after each phase.

2.1.2 Where ECS fits

ECS typically fits in the simulation and render-prep parts of the loop:

World holds the mutable runtime state (entities + components)

Systems implement the game logic by querying components and mutating them

Commands allow safe structural changes during those systems (cmd() → flush())

Schedule provides deterministic ordering and safe mutation boundaries between phases

A useful mental model:

Rendering engines want a renderable snapshot (meshes, transforms, materials, draw lists).

Input systems produce intent/state (move left, fire, target position).

Physics engines operate on physical representations (bodies, colliders).

ECS sits in the middle coordinating these, not replacing them.

A concrete mapping using this primitives

Input phase: read input → write InputState component / resource → enqueue spawns/despawns if needed

flush()

Sim phase: run movement/AI/gameplay using queries → update Position , Velocity , etc.

flush()

Render phase: build lightweight render data (RenderTransform , Visible , etc.) → hand off to renderer

1.

2.

3.

4.

5.

6.

7.

•

•

•

•

•

•

•

•

•

•

•

•

2. Explanation

- 6/77 - Copyright © 2026 PirateJL

This is why “flush points” exist in an ECS schedule: they define when the world structure is allowed to change and when the next

phase sees those changes.

2.1.3 Why ECS does not replace rendering, input, or physics engines

Rendering

A renderer is a specialized pipeline:

GPU resources, shaders, batching, sorting, culling

frame graph / render passes

platform-specific backends

ECS is not a GPU pipeline. What ECS does well is:

storing render-related data as components (Transform , Renderable , MaterialRef , etc.)

running systems that prepare and synchronize data for the renderer

So ECS often produces a render list or updates engine scene objects, but the renderer still does the rendering.

Input

Input is inherently eventful and platform-driven:

OS/window events

device state polling

mapping raw events to game actions

ECS can store input state (InputAxis , ActionPressed , etc.) and process it in systems, but it doesn’t replace the platform input

layer. In practice:

platform collects input

ECS system transforms it into gameplay-friendly state

Physics

Physics engines are optimized solvers:

broadphase / narrowphase collision detection

integrators and constraint solvers

continuous collision, joints, sleeping, etc.

ECS can represent physics data (mass, collider type, desired forces) and drive the physics engine, but the solver itself is a

dedicated subsystem.

A common integration pattern:

ECS → write forces/desired velocity into physics engine

Physics step happens

Physics results → write back transforms/velocities into ECS

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.1.3 Why ECS does not replace rendering, input, or physics engines

- 7/77 - Copyright © 2026 PirateJL

2.1.4 The key idea: ECS is the coordination model

ECS shines when you treat it as:

a data model for game state (components)

a behavior model for game logic (systems)

an execution model for ordering (schedule + phases + flush points)

But rendering/input/physics are specialized domains with their own constraints and pipelines. ECS coordinates them by being

the “truth” for game state and by running the logic that translates between subsystems.

January 4, 2026

January 4, 2026

•

•

•

2.1.4 The key idea: ECS is the coordination model

- 8/77 - Copyright © 2026 PirateJL

2.2 Integrating an ECS with Three.js

Three.js is a rendering engine (scene graph + GPU submission). This ECS is a simulation architecture (data in components,

behavior in systems, ordered by a schedule, with safe structural changes via deferred commands + flush points). Integrating

them well means letting each do what it’s good at, and defining clean “hand-off” boundaries.

2.2.1 The mental model: ECS drives state, Three.js draws it

A practical split that scales:

ECS World = authoritative game/sim state (position, velocity, health, selection, etc.)

Three.js Scene = visual representation (Object3D transforms, meshes, materials, lights)

So the goal is not “put Three.js inside ECS”, but:

Systems write simulation state → a render-sync step pushes that state into Three.js objects.

2.2.2 Where ECS fits in the Three.js render loop

Three.js typically runs:

update (your code)

renderer.render(scene, camera)

With ECS, your “update” becomes scheduled phases, e.g.:

input (read DOM/input, write components/resources)

sim (gameplay, movement, AI)

render (sync ECS → Three.js, then render)

The Schedule already supports this exact idea and flushes commands between phases to make entity/component creation/

removal deterministic.

2.2.3 Why flush points matter for Three.js integration

Spawning/despawning and add/remove are structural changes in this ECS and are expected to be deferred while iterating

queries/systems.

That maps perfectly to Three.js object lifecycle:

During sim: decide “this entity should appear/disappear” → enqueue ECS commands

At flush boundary: ECS structure becomes stable

Render-sync phase: create/remove corresponding Object3D safely, because you’re no longer mid-iteration on archetype

tables

This is the same reason this ECS has cmd() / flush() and why Schedule flushes between phases.

•

•

1.

2.

•

•

•

•

•

•

2.2 Integrating an ECS with Three.js

- 9/77 - Copyright © 2026 PirateJL

2.2.4 A clean integration pattern: “Renderable bridge” components

Common approach:

A Transform component (position/rotation/scale) is owned by ECS.

A Renderable component carries a reference/handle to what Three.js should draw (mesh id, model key, material key…).

A render-sync system queries (Transform, Renderable) and applies changes to the corresponding Object3D .

Key idea: ECS components store “what it is” and “where it is”, while the actual Mesh/Object3D lives in Three.js.

This keeps:

ECS portable (not tied to Three.js types everywhere)

Three.js free to manage GPU resources

2.2.5 One-way vs two-way sync (pick a source of truth)

Integration gets messy when both ECS and Three.js “own” transforms.

A scalable default:

ECS is the source of truth for gameplay transforms.

Three.js Object3D is just the projection of that state.

Only do two-way sync when you truly need it (editor gizmos, drag interactions). Even then, treat it as a controlled input step:

read Object3D change in input or tools phase

write back to ECS components

let sim proceed from ECS again

2.2.6 Why ECS does not replace Three.js (and shouldn’t try)

Even with a “full ECS” architecture, Three.js still owns:

scene graph concerns (parenting, cameras, lights)

GPU resource lifetimes (buffers, textures, materials)

draw submission, sorting, batching, culling strategies

ECS complements that by making simulation state and logic scalable: archetype tables + queries + systems + scheduling.

2.2.7 Scaling tips (when entity counts grow)

When you have many similar visuals:

prefer InstancedMesh in Three.js

let ECS systems produce instance transforms (dense arrays) from queries

upload those transforms once per frame

This aligns with why archetype ECS exists: tight iteration over dense component columns.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.2.4 A clean integration pattern: “Renderable bridge” components

- 10/77 - Copyright © 2026 PirateJL

January 4, 2026

January 4, 2026

2.2.7 Scaling tips (when entity counts grow)

- 11/77 - Copyright © 2026 PirateJL

2.3 What people mean by a “full ECS”

“ECS” can mean just a storage model (entities + components in some container), or it can mean an entire game/app

architecture where most runtime state and behavior flows through an ECS world + schedule + systems.

A “full ECS” is typically an architecture where:

Entities are only IDs/handles (no behavior).

Components are only data.

Systems are where behavior lives (pure-ish functions operating on data).

A World is the single source of truth for runtime state.

A Scheduler (or “app loop”) defines when systems run and in what order.

Structural changes are controlled (often via a command buffer) so iteration stays safe and fast.

This library already contains several “full ECS” building blocks: archetype tables (SoA), queries, deferred commands, and a

phase-based schedule.

What makes it “full” is less “do you use archetypes?” and more “does the ECS define the whole program’s execution model?”

2.3.1 ECS as architecture, not just storage

Storage-only ECS (not “full”)

This is common in small libs or quick implementations:

Entities: IDs

Components: data bags

“Systems”: often just loops in user code

Little/no scheduling model

No consistent lifecycle for input → simulation → rendering

Structural changes are ad-hoc

You can build a game with this, but the ECS isn’t the organizing principle—it’s a container.

Architecture ECS (“full ECS”)

Here, ECS is the spine of the app:

There’s a main schedule (often phases like input → sim → render).

Systems are registered, ordered, and executed consistently each tick.

Cross-cutting state is handled intentionally (resources/singletons, events, time, config).

Structural changes are made safe/deterministic (command buffers, flush points).

You get a uniform pattern for new features: “add data + add system”.

The Schedule explicitly models phase ordering + flush barriers, which is a key “architecture ECS” ingredient.

2.3.2 Difference between a library ECS and an engine ECS

Library ECS

Goal: provide core ECS mechanics.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.3 What people mean by a “full ECS”

- 12/77 - Copyright © 2026 PirateJL

Typical traits:

Focus on storage + query performance (archetypes/SoA)

Minimal assumptions about the rest of the program

Simple scheduling (or none), often single-threaded

You (the user) integrate input, rendering, physics, assets, scenes, etc.

Engine ECS (Bevy / Unity DOTS / etc.)

Goal: ECS is the entire runtime framework.

Engine ECS usually includes (beyond a library):

A full app lifecycle (startup, update, fixed update, shutdown)

Integrated input, rendering, audio, physics, animation, UI

Asset pipeline + hot reload + serialization

Advanced scheduling: dependency graphs, system sets, run criteria, fixed timesteps

Often parallel execution + conflict detection

Tooling/editor integration

So: library ECS = the “ECS core”. engine ECS = ECS core + everything around it, with ECS as the central organizing

model.

January 4, 2026

January 4, 2026

•

•

•

•

•

•

•

•

•

•

2.3.2 Difference between a library ECS and an engine ECS

- 13/77 - Copyright © 2026 PirateJL

2.4 Why archetype ECS?

An archetype ECS organizes entities into tables where every entity in a table shares the same component set, stored in SoA

form (one column per component). This library explicitly follows this model: “Archetypes (tables) store entities in a SoA layout…

Queries iterate matching archetypes efficiently… Commands defer structural changes…”

The “why” is mostly about making the common case (systems that iterate lots of entities with the same components) extremely

fast and predictable.

2.4.1 Cache locality

Most game/sim systems look like:

“for all entities with Position and Velocity , update position”

“for all entities with Transform and Renderable , build render data”

With archetypes, those entities live together in a table, and each component is a dense column:

Position[] contiguous

Velocity[] contiguous

So the CPU reads memory sequentially, which is what caches and prefetchers love. That’s the practical meaning of cache

locality: fewer cache misses, more work per nanosecond.

In the library, this is literally the storage promise: SoA archetype tables + queries over matching archetypes.

2.4.2 Branch elimination (and “no-join” iteration)

In many ECS designs, the core loop must constantly ask:

“does this entity have Velocity?”

“if yes, fetch it; if not, skip”

That creates branches and scattered memory access.

With archetypes, the membership check is moved up:

pick archetypes that already contain all required components

iterate their rows

Inside the inner loop, there’s no per-entity “has component?” branching—every row is guaranteed to match. The API reflects that

by querying required component types and yielding direct component references (c1 , c2 , …).

This is what people mean by branch elimination in archetype ECS: fewer conditional checks in the hot loop, more straight-line

code.

•

•

•

•

•

•

1.

2.

2.4 Why archetype ECS?

- 14/77 - Copyright © 2026 PirateJL

2.4.3 Predictable iteration

Archetype iteration tends to be predictable because:

You iterate dense arrays (rows/columns), not sparse IDs.

Results are shaped consistently (e , c1 , c2 , … in argument order).

Structural changes are controlled: this library emphasizes deferring structural changes via cmd() and applying them at

flush() points.

Schedule adds explicit “phase barriers” by flushing between phases, making the world structure stable during each phase’s

iteration.

That predictability is less about “deterministic order of entities” and more about deterministic rules for when the world can

change shape.

2.4.4 Comparison with sparse-set ECS

A sparse-set ECS typically stores each component type separately (often as a dense array + sparse index by entity id). It’s

excellent for:

fast lookup for a single component type (Position alone)

cheap per-component iteration

simple storage and often cheaper structural changes for single components

But when a system needs multiple components (Position + Velocity + Mass + Forces), sparse-set often needs some form of

join:

iterate one component pool, check membership in the others

or intersect sets / hop through indirections

That can introduce:

more branching (if has(...))

more random memory access (chasing indices across pools)

Archetypes flip that trade-off:

multi-component iteration is the “happy path” (no join inside the hot loop)

but structural changes can be more expensive because adding/removing a component may move an entity between tables.

Rule of thumb

If your game spends most time in systems that read/write several components per entity, archetypes tend to shine.

If your workload is lots of single-component iteration and high churn (constant add/remove), sparse-set can be simpler and

sometimes cheaper.

2.4.5 The real trade-off (why it’s not “always archetypes”)

Archetype ECS wins by making the hot loops fast, but it pays for it with:

structural churn cost (moving entities between tables on add/remove)

many archetypes if you have lots of component combinations

a stronger need for command buffering + flush boundaries to keep iteration safe.

That’s why a “full ECS” architecture often includes commands + scheduling: it’s the natural partner to archetype storage.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.4.3 Predictable iteration

- 15/77 - Copyright © 2026 PirateJL

January 14, 2026

January 4, 2026

2.4.5 The real trade-off (why it’s not “always archetypes”)

- 16/77 - Copyright © 2026 PirateJL

2.5 Why deferred commands exist in an archetype ECS

In an archetype ECS, deferred commands (a command buffer) are not a “nice-to-have”. They exist because the fastest storage

model makes certain mutations unsafe during iteration. The library API expresses this directly with world.cmd() ,

world.flush() , and Schedule.run(...)/flush barriers .

2.5.1 Archetypes are tables, and queries walk those tables

An archetype ECS stores entities in tables:

one archetype = one component set

one row = one entity

one column per component type (SoA)

A query like world.query(Position, Velocity) does not “scan entities”. It first selects archetypes that contain the required

component columns, then iterates dense rows in those tables.

This density is where the performance comes from.

2.5.2 The core problem: structural changes move entities between tables

A structural change is anything that changes the component set of an entity:

spawn()

despawn(e)

add(e, Ctor, value)

remove(e, Ctor)

In an archetype ECS, add/remove usually means:

remove the entity’s row from its current archetype table

insert a row into another archetype table

update internal bookkeeping (where the entity lives now)

That is fundamentally different from set(e, Ctor, value) , which just updates a value inside the same row/column.

So: structural change = table move.

2.5.3 Why it’s unsafe to do structural changes during a query

When you iterate a query, you are conceptually doing:

“for each matching archetype table”

“for each row index in that table”

“read columns at that row”

If you structurally change any entity during this loop, you can break the iteration invariants:

1) Swap-remove can invalidate the current row

Many archetype implementations remove rows with swap-remove (O(1)): the last row is swapped into the removed row index.

•

•

•

•

•

•

•

1.

2.

3.

•

•

•

2.5 Why deferred commands exist in an archetype ECS

- 17/77 - Copyright © 2026 PirateJL

If you remove entity A at row i , entity B may be swapped into row i .

If your loop then increments i , entity B might be skipped.

Or processed twice depending on iteration strategy.

2) Moving entities changes which archetypes match

Adding/removing a component can move an entity into or out of the set of archetypes that the query is iterating.

If you mutate membership while iterating:

you can end up iterating an archetype that didn’t exist in the matching set at the start

or miss entities that moved into a matching archetype

3) Internal indices can become stale mid-loop

The library World tracks where an entity lives (which archetype + row). A structural change updates those indices. If you mutate

while holding references from the iteration, you can end up with:

stale row pointers

stale bookkeeping

inconsistent state if multiple mutations occur

Even if you “think it works”, it’s fragile and will eventually bite.

2.5.4 Deferred commands are the solution: separate “read/iterate” from “mutate structure”

A command buffer enforces a clean two-step model:

During iteration: read data, compute decisions, mutate component values (safe)

At a safe boundary: apply structural changes in a batch (safe)

That’s exactly what the library documents:

world.cmd() enqueues structural operations

world.flush() applies queued commands

world.update(dt) runs systems, then flushes at frame end

Schedule.run(...) flushes between phases, providing deterministic barriers

This is why deferred commands exist: they preserve iteration correctness without giving up table-based performance.

2.5.5 Why flushing in phases is architecturally important

The library Schedule explicitly flushes after each phase.

This is not just “nice ordering”. It creates deterministic points where the world’s structure is allowed to change.

Example mental model:

Input phase: decide spawns/despawns based on input → enqueue commands

Flush: apply those spawns so they exist for simulation

Simulation phase: move things, detect collisions → enqueue structural changes

Flush: apply spawns/despawns/removals before render

Render phase: build render data from a stable world snapshot

•

•

•

•

•

•

•

1.

2.

•

•

•

•

•

•

•

•

•

2.5.4 Deferred commands are the solution: separate “read/iterate” from “mutate structure”

- 18/77 - Copyright © 2026 PirateJL

That separation reduces “action at a distance” bugs and makes debugging easier:

“why does entity exist in sim but not render?” → check which phase flushed it.

2.5.6 What you gain by deferring

Correctness

No skipped entities

No double-processing due to swap-remove effects

Stable iteration semantics

Determinism

Structural changes occur at explicit boundaries

Easier to reason about ordering

Performance

Keeps archetype iteration tight and cache-friendly

Batching structural operations reduces churn

2.5.7 What to do inside a system

Inside a system (or a query loop), follow this rule:

✅ mutate component values directly (e.g. pos.x += ...)

✅ enqueue structural changes via cmd()

❌ don’t call structural World ops directly mid-iteration

2.5.8 Summary: the “why” in one sentence

Deferred commands exist because archetype queries iterate dense tables, and structural changes move rows between

tables, which can invalidate iteration—so we queue structural changes and apply them at safe flush boundaries (flush() /

schedule phases).

January 4, 2026

January 4, 2026

•

•

•

•

•

•

•

•

•

•

•

2.5.6 What you gain by deferring

- 19/77 - Copyright © 2026 PirateJL

2.6 Why use Events in ECS?

2.6.1 Events solve a different problem than Components and Resources

ECS has three kinds of data:

Components: persistent, per-entity state (Position, Velocity, Health)

Resources: persistent, global state (Input, Time, Config, caches)

Events: transient messages (Hit happened, Click happened, Play sound)

Trying to represent “something happened” as a component usually causes awkward designs:

adding/removing “Event components” becomes structural churn

you need cleanup systems to remove them

multiple systems race to observe/remove them

Events avoid that by being explicitly transient.

2.6.2 Events reduce coupling between systems

Without events:

combatSystem might call audioSystem directly

or it might mutate a shared global array

With events:

producers don’t know consumers exist

consumers don’t know who produced the messages

This keeps systems reusable and easy to rearrange in Schedule .

2.6.3 Why double-buffering?

A common bug in event systems is “events appear while I’m iterating”.

Double-buffering prevents that:

consumers read a stable snapshot (read buffer)

producers write to a different buffer (write buffer)

swap happens at deterministic boundaries

No surprises. No iterator invalidation. No mid-phase visibility.

2.6.4 Why phase-scoped delivery?

This ECS already has a concept of phase boundaries:

structural changes are deferred via Commands

flush() applies them between phases

Events align with the same boundary:

swapEvents() delivers events between phases

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.6 Why use Events in ECS?

- 20/77 - Copyright © 2026 PirateJL

This makes it easy to design pipelines:

input produces actions → beforeUpdate consumes

update produces gameplay events → afterUpdate consumes

render produces UI/VFX events → afterRender consumes

audio consumes sound events

2.6.5 Trade-offs (and the forwarding pattern)

With phase-scoped delivery, an event is visible in the next phase only. To deliver an event across multiple phases (e.g., from

update to audio), you forward it by draining and re-emitting.

This is deliberate:

it keeps pipelines explicit

prevents “stale” events lingering through unrelated phases

makes delivery deterministic and easy to debug

January 14, 2026

January 13, 2026

•

•

•

•

•

•

•

2.6.5 Trade-offs (and the forwarding pattern)

- 21/77 - Copyright © 2026 PirateJL

3. How To Guides

3.1 How to add InputState + AssetCache as Resources and use them in systems

3.1.1 Goal

Store Input state and an Asset cache as world Resources, then access them inside systems using requireResource() .

Example InputStateRes

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

export class InputStateRes
{

public keysDown = new Set<string>();
public keysPressed = new Set<string>(); // pressed this frame
public keysReleased = new Set<string>(); // released this frame

public mouseX = 0;
public mouseY = 0;
public mouseButtonsDown = new Set<number>();
public mousePressed = new Set<number>(); // pressed this frame
public mouseReleased = new Set<number>(); // released this frame
public wheelDeltaY = 0;

beginFrame(): void
{

this.keysPressed.clear();
this.keysReleased.clear();
this.mousePressed.clear();
this.mouseReleased.clear();
this.wheelDeltaY = 0;

}

keyDown(code: string): void
{

if (!this.keysDown.has(code)) this.keysPressed.add(code);
this.keysDown.add(code);

}

keyUp(code: string): void
{

if (this.keysDown.has(code)) this.keysReleased.add(code);
this.keysDown.delete(code);

}

mouseMove(x: number, y: number): void {
this.mouseX = x;
this.mouseY = y;

}

mouseDown(btn: number): void
{

if (!this.mouseButtonsDown.has(btn)) this.mousePressed.add(btn);
this.mouseButtonsDown.add(btn);

}

mouseUp(btn: number): void
{

if (this.mouseButtonsDown.has(btn)) this.mouseReleased.add(btn);
this.mouseButtonsDown.delete(btn);

}

wheel(deltaY: number): void
{

this.wheelDeltaY += deltaY;
}

}

3. How To Guides

- 22/77 - Copyright © 2026 PirateJL

Example AssetCacheRes

3.1.2 1) Register the resources at startup

That’s the only “required” setup. Everything else assumes these exist.

3.1.3 2) Wire DOM events into InputStateRes

Attach listeners once:

Call it after initResource(...) .

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

export class AssetCacheRes
{

private images = new Map<string, HTMLImageElement>();
private pending = new Map<string, Promise<HTMLImageElement>>();

/** Loads once, dedupes concurrent calls, returns the same instance thereafter. */
public getImage(url: string): Promise<HTMLImageElement>
{

const ready = this.images.get(url);
if (ready) return Promise.resolve(ready);

const p = this.pending.get(url);
if (p) return p;

const promise = new Promise<HTMLImageElement>((resolve, reject) => {
const img = new Image();
img.onload = () => {

this.images.set(url, img);
this.pending.delete(url);
resolve(img);

};
img.onerror = (e) => {

this.pending.delete(url);
reject(e);

};
img.src = url;

});

this.pending.set(url, promise);
return promise;

}

/** Returns the image if already loaded; otherwise undefined. */
public peekImage(url: string): HTMLImageElement | undefined {

return this.images.get(url);
}

}

1
2

world.initResource(InputStateRes, () => new InputStateRes());
world.initResource(AssetCacheRes, () => new AssetCacheRes());

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

export function attachInput(world: WorldApi): void
{

const input = world.requireResource(InputStateRes);

window.addEventListener("keydown", e => input.keyDown(e.code));
window.addEventListener("keyup", e => input.keyUp(e.code));
window.addEventListener("mousemove", e => input.mouseMove(e.clientX, e.clientY));
window.addEventListener("mousedown", e => input.mouseDown(e.button));
window.addEventListener("mouseup", e => input.mouseUp(e.button));
window.addEventListener("wheel", e => input.wheel(e.deltaY), { passive: true });

}

3.1.2 1) Register the resources at startup

- 23/77 - Copyright © 2026 PirateJL

3.1.4 3) Reset “pressed/released” flags once per frame

Add a phase/system that runs before gameplay update:

3.1.5 4) Read input from systems

Example “move player” system:

3.1.6 5) Use AssetCacheRes in a render system (deduped async loads)

3.1.7 6) Run phases in order

Minimal schedule:

Game loop:

1
2
3
4

export function beginFrameSystem(w: WorldApi, _dt: number): void
{

w.requireResource(InputStateRes).beginFrame();
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

export function playerMoveSystem(w: WorldApi, dt: number): void
{

const input = w.requireResource(InputStateRes);

let dx = 0, dy = 0;
if (input.keysDown.has("KeyW")) dy -= 1;
if (input.keysDown.has("KeyS")) dy += 1;
if (input.keysDown.has("KeyA")) dx -= 1;
if (input.keysDown.has("KeyD")) dx += 1;

const speed = 220;

for (const { c1: tr } of w.query(Transform, PlayerTag)) {
tr.x += dx * speed * dt;
tr.y += dy * speed * dt;

}
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

export function renderSpritesSystem(ctx: CanvasRenderingContext2D)
{

return (w: WorldApi, _dt: number): void => {
const assets = w.requireResource(AssetCacheRes);

for (const { c1: tr, c2: sp } of w.query(Transform, Sprite)) {
assets.getImage(sp.url).catch(() => {});
const img = assets.peekImage(sp.url);
if (!img) continue;

ctx.drawImage(img, tr.x, tr.y, sp.w, sp.h);
}

};
}

1
2
3

sched.add("beginFrame", beginFrameSystem);
sched.add("update", playerMoveSystem);
sched.add("render", renderSpritesSystem(ctx));

1 sched.run(world, dt, ["beginFrame", "update", "render"]);

3.1.4 3) Reset “pressed/released” flags once per frame

- 24/77 - Copyright © 2026 PirateJL

3.1.8 Common variations

Optional resource usage

If a resource is optional (debug/editor), use:

Preload assets (menu/loading screen)

January 14, 2026

January 9, 2026

1
2

const dbg = w.getResource(DebugRes);
if (dbg) dbg.enabled = true;

1 await Promise.all(urls.map(u => world.requireResource(AssetCacheRes).getImage(u)));

3.1.8 Common variations

- 25/77 - Copyright © 2026 PirateJL

3.2 How to add/remove components at runtime

Define your component types (classes):

Add/remove immediately when you are not iterating a query:

Add/remove during a query/system using deferred commands:

January 8, 2026

January 4, 2026

1.

1
2

class Position { constructor(public x = 0, public y = 0) {} }
class Velocity { constructor(public x = 0, public y = 0) {} }

1.

1
2
3
4
5
6
7
8
9

const e = world.spawn();
world.add(e, Position, new Position(0, 0));
world.add(e, Velocity, new Velocity(1, 0));

// Or add many at once
const z = world.spawn();
world.addMany(z, [new Position(0, 0), new Velocity(1, 0)])

world.remove(e, Velocity);

1.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

world.addSystem((w: any) => {
for (const { e, c1: pos } of w.query(Position)) {

if (pos.x > 10) w.cmd().add(e, Velocity, new Velocity(1, 0));
if (pos.x < 0) w.cmd().remove(e, Velocity);

}
});

// Or remove many at once
world.addSystem((w: any) => {

for (const { e, c1: pos } of w.query(Position, Velocity)) {
if (pos.x < 0) w.cmd().removeMny(e, Position, Velocity);

}
});

// apply queued structural changes
world.flush();

3.2 How to add/remove components at runtime

- 26/77 - Copyright © 2026 PirateJL

3.3 How to despawn entities safely

Despawn immediately when not iterating:

Despawn during a query/system via cmd() :

Or rely on end-of-frame flush:

January 4, 2026

January 4, 2026

1.

1 world.despawn(e);

1.

1
2
3
4
5
6
7
8

world.addSystem((w: any) => {
for (const { e, c1: pos } of w.query(Position)) {

if (pos.x > 10) w.cmd().despawn(e);
}

});

// apply despawns
world.flush();

1.

1 world.update(dt); // runs systems, then flushes

3.3 How to despawn entities safely

- 27/77 - Copyright © 2026 PirateJL

3.4 How to have multiple Worlds (globe vs ground simulation)

Create two worlds:

Give each one its own schedule (recommended):

Run both each frame (same dt):

Share data explicitly between worlds (pick one):

copy values at a known point (end of sim , start of other sim)

or have a “bridge” step in your outer loop that reads from one world and writes into the other (via normal add/set or via cmd() +

flush())

January 14, 2026

January 4, 2026

1.

1
2

const globeWorld = new World();
const groundWorld = new World();

1.

1
2

const globeSched = new Schedule();
const groundSched = new Schedule();

1.

1
2

globeSched.run(globeWorld, dt, ["input", "sim", "render"]);
groundSched.run(groundWorld, dt, ["input", "sim", "render"]);

1.

2.

3.

3.4 How to have multiple Worlds (globe vs ground simulation)

- 28/77 - Copyright © 2026 PirateJL

3.5 How to integrate ECS into a game loop

3.5.1 Option A — Use world.update(dt)

Register systems with addSystem(...)

In your loop call:

3.5.2 Option B — Use Schedule phases (recommended for games)

Build a schedule (input , sim , render)

In requestAnimationFrame :

January 4, 2026

January 4, 2026

1.

2.

1
2
3

function tick(dt: number) {
world.update(dt); // runs systems, then flushes

}

1.

2.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

let last = performance.now();

function frame(now: number) {
const dt = (now - last) / 1000;
last = now;

sched.run(world, dt, ["input", "sim", "render"]); // flush between phases
renderer.render(scene, camera);

requestAnimationFrame(frame);
}

requestAnimationFrame(frame);

3.5 How to integrate ECS into a game loop

- 29/77 - Copyright © 2026 PirateJL

3.6 How to run logic conditionally

3.6.1 Option A — Guard inside the system (simple)

Put a condition at the top:

3.6.2 Option B — Conditional phases (skip whole groups)

Maintain your phase list dynamically:

3.6.3 Option C — Wrap systems (reuse predicates)

Make a helper:

January 4, 2026

January 4, 2026

1.

1
2
3
4
5
6
7
8

let paused = false;

world.addSystem((w: any, dt: number) => {
if (paused) return;
for (const { c1: pos, c2: vel } of w.query(Position, Velocity)) {

pos.x += vel.x * dt;
}

});

1.

1
2
3
4
5
6
7

const base = ["input", "sim", "render"];

function getPhases(paused: boolean) {
return paused ? ["input", "render"] : base;

}

sched.run(world, dt, getPhases(paused));

1.

1
2
3
4
5
6
7
8

const runIf = (pred: () => boolean, fn: (w: any, dt: number) => void) =>
(w: any, dt: number) => { if (pred()) fn(w, dt); };

world.addSystem(runIf(() => !paused, (w, dt) => {
for (const { c1: pos, c2: vel } of w.query(Position, Velocity)) {

pos.x += vel.x * dt;
}

}));

3.6 How to run logic conditionally

- 30/77 - Copyright © 2026 PirateJL

3.7 How to split logic into multiple system phases

Create a Schedule and register systems by phase name:

Define phase order:

Run it each tick (flush happens after each phase):

January 4, 2026

January 4, 2026

1.

1
2
3
4
5
6

const sched = new Schedule();

sched
.add("input", (w: any) => { /* ... */ })
.add("sim", (w: any, dt: number) => { /* ... */ })
.add("render",(w: any) => { /* ... */ });

1.

1 const phases = ["input", "sim", "render"];

1.

1 sched.run(world, dt, phases);

3.7 How to split logic into multiple system phases

- 31/77 - Copyright © 2026 PirateJL

3.8 How to use ECS alongside Three.js

3.8.1 Pattern: ECS owns state, Three.js owns objects

Keep Three.js objects in a map (outside ECS):

Add components for simulation and “render tag”:

Spawn entities in ECS:

Create a render-sync system in a render phase:

create missing meshes

update transforms

remove meshes for despawned entities (see step 5)

Despawn visually after flush:

despawn in ECS via cmd().despawn(e)

after the flush boundary, remove from meshes if it’s gone

A simple cleanup pass each frame:

January 8, 2026

January 4, 2026

1.

1 const meshes = new Map<number, THREE.Object3D>(); // key = entity.id

1.

1
2

class Position { constructor(public x=0, public y=0, public z=0) {} }
class Renderable { constructor(public kind: "cube" | "ship" = "cube") {} }

1.

1
2
3
4

const e = world.spawnMany(
new Position(0, 0, 0),
new Renderable("cube")

)

1.

2.

3.

4.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

sched.add("render", (w: any) => {
for (const { e, c1: pos, c2: rend } of w.query(Position, Renderable)) {

let obj = meshes.get(e.id);
if (!obj) {

obj = makeObjectFromKind(rend.kind); // your factory
scene.add(obj);
meshes.set(e.id, obj);

}
obj.position.set(pos.x, pos.y, pos.z);

}
});

1.

2.

3.

1
2
3
4

for (const [id, obj] of meshes) {
// if you track alive entities externally, remove when not alive anymore.
// (One common approach: record seen IDs during the render query and remove the rest.)

}

3.8 How to use ECS alongside Three.js

- 32/77 - Copyright © 2026 PirateJL

3.9 How to use Events to decouple systems across phases

3.9.1 Goal

Emit events in one phase and consume them in a later phase, without coupling systems directly.

This guide assumes you already have a Schedule with multiple phases and that the schedule swaps events between phases.

3.9.2 1) Define event types

Use classes (recommended) or token keys.

3.9.3 2) Emit events from a producer system

Example: gameplay system emits damage + sound.

3.9.4 3) Consume events in the next phase

Place a consumer in the next phase (phase-scoped delivery):

Schedule order:

1
2
3
4
5
6
7

export class DamageEvent {
constructor(public target: Entity, public amount: number) {}

}

export class PlaySoundEvent {
constructor(public id: string) {}

}

1
2
3
4
5

function combatSystem(w: WorldApi, _dt: number) {
// ... detect hit
w.emit(DamageEvent, new DamageEvent(target, 10));
w.emit(PlaySoundEvent, new PlaySoundEvent("hit"));

}

1
2
3
4
5
6
7

function applyDamageSystem(w: WorldApi, _dt: number) {
w.drainEvents(DamageEvent, (ev) => {

const hp = w.get(ev.target, Health);
if (!hp) return;
hp.value -= ev.amount;

});
}

1
2

schedule.add("update", combatSystem);
schedule.add("afterUpdate", applyDamageSystem);

3.9 How to use Events to decouple systems across phases

- 33/77 - Copyright © 2026 PirateJL

3.9.5 4) Deliver events to late phases (forwarding pattern)

With phase-scoped delivery, an event emitted in update is visible in afterUpdate . If you want it to reach audio several phases

later, forward it:

Example pipeline:

3.9.6 5) Use events(key).values() for read-only inspection

If you need to check what’s readable without consuming it:

Prefer drainEvents for typical processing.

3.9.7 6) Clear events when resetting state

To clear one type:

To clear all readable event buffers:

January 13, 2026

January 13, 2026

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

function forwardSoundSystem(w: WorldApi, _dt: number) {
w.drainEvents(PlaySoundEvent, (ev) => {

w.emit(PlaySoundEvent, ev); // re-emit for the next phase
});

}

function audioSystem(w: WorldApi, _dt: number) {
w.drainEvents(PlaySoundEvent, (ev) => {

console.log("[audio] play:", ev.id);
});

}

1
2
3
4

schedule.add("update", combatSystem); // emits PlaySoundEvent
schedule.add("afterUpdate", forwardSoundSystem); // forwards -> render
schedule.add("afterRender", forwardSoundSystem); // forwards -> audio
schedule.add("audio", audioSystem); // consumes

1
2
3
4

const pending = w.events(DamageEvent).values();
if (pending.length > 0) {

// inspect (do not store array reference)
}

1 w.clearEvents(DamageEvent);

1 w.clearEvents();

3.9.5 4) Deliver events to late phases (forwarding pattern)

- 34/77 - Copyright © 2026 PirateJL

4. Reference

4.1 Archetypes

4.1.1 Purpose

An archetype is an internal storage “table” that groups together all entities sharing the same set of component types.

Archetypes are the core performance mechanism of this ECS: queries match archetypes first, then iterate rows inside them.

4.1.2 Storage model

Table layout (SoA)

Archetypes store component data in Structure of Arrays (SoA) form:

one column per component type

each entity occupies a row across all columns

This is the reason queries are efficient: iteration is over dense arrays rather than scattered objects.

4.1.3 Archetype membership

Structural changes move entities between archetypes

When an entity’s component set changes, the entity moves to a different archetype:

add(e, Ctor, value) is structural and may move the entity to another archetype

remove(e, Ctor) is structural and may move the entity to another archetype

Non-structural updates do not change archetype membership:

set(e, Ctor, value) updates the value but does not change the component set

4.1.4 Queries and archetypes

Archetype filtering

query(...ctors) only iterates archetypes that contain all required component columns, then yields matching entity rows.

Query row shape

For query(A, B, C) , the yielded row contains:

e (entity handle)

c1 , c2 , c3 component values in the same order as the ctor arguments

•

•

•

•

•

•

•

4. Reference

- 35/77 - Copyright © 2026 PirateJL

4.1.5 Safety constraints

Structural changes during iteration

While iterating queries (and generally while systems run), doing structural changes directly can throw. The recommended

pattern is:

enqueue structural changes via world.cmd()

apply them via world.flush() (or at the end of world.update(dt))

This matters because structural changes imply archetype moves.

4.1.6 Visibility / Public API

Archetypes are an internal mechanism (the public exports are Types , TypeRegistry , Commands , World , Schedule). Users interact

with archetypes only indirectly through World operations and query() .

January 4, 2026

January 4, 2026

•

•

4.1.5 Safety constraints

- 36/77 - Copyright © 2026 PirateJL

4.2 Commands

4.2.1 Purpose

Commands is a deferred structural change buffer. It lets you enqueue structural operations (spawn/despawn/add/remove) while

iterating queries or running systems, then apply them later via world.flush() (or at the end of world.update(dt)).

4.2.2 How to obtain a Commands buffer

world.cmd(): Commands

World.cmd() returns a Commands instance you can use to enqueue operations.

Typical usage:

4.2.3 Supported operations

The command buffer supports these operations (as documented by the project):

spawn(init?)

Enqueues creation of a new entity.

init?: (e: Entity) => void is an optional callback invoked with the spawned entity, typically used to enqueue add() calls for

initial components.

spawnBundle(...items: ComponentCtorBundleItem[])

Queues the creation of a new entity, along with its initial components, and applies everything on the next flush (within the same

flush cycle).

...items: ComponentCtorBundleItem[] is the list of components to add to the newly created entity.

Internally, it iterates over the items and calls add(e, ctor, value) for each component.

despawn(e: Entity)

Enqueues removal of an entity.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

const cmd = world.cmd();

cmd.spawn((e) => {
cmd.add(e, Position, new Position(0, 0));

});

cmd.add(entity, Velocity, new Velocity(1, 0));
cmd.remove(entity, Velocity);
cmd.despawn(entity);

world.flush();

•

•

•

4.2 Commands

- 37/77 - Copyright © 2026 PirateJL

despawnBundle(entities: Entity[])

Enqueues the destruction of multiple entities. The actual removals are applied when commands are flushed.

entities: Entity[] is the list of entities to despawn.

Internally, it iterates over the array and calls despawn(e) for each entity.

add(e, ctor, value)

Enqueues adding a component to an entity. This is a structural change (it may move the entity between archetypes), which is

why it is commonly deferred.

addBundle(e: Entity, ...items: ComponentCtorBundleItem[])

Enqueues adding multiple components to an existing entity. All component adds are applied on flush.

e: Entity is the target entity.

...items: ComponentCtorBundleItem[] is the list of components to add.

Internally, it loops through the items and calls add(e, ctor, value) for each component.

remove(e, ctor)

Enqueues removing a component from an entity. This is also a structural change.

removeBundle(e: Entity, ...ctors: ComponentCtor<any>[])

Enqueues removal of multiple component types from an entity. The removals are applied on flush.

e: Entity is the target entity.

...ctors: ComponentCtor<any>[] is the list of component constructors (types) to remove.

Internally, it loops through the ctors and calls remove(e, ctor) for each one.

4.2.4 Applying commands

world.flush(): void

Applies all queued commands. World.update(dt) also flushes automatically at the end of the frame.

With Schedule

When using Schedule , world.flush() is called after each phase, creating deterministic “phase barriers” for command

application.

4.2.5 Safety rule

Direct structural operations can throw while iterating queries or running systems. The intended pattern is:

enqueue structural changes with world.cmd()

apply them with world.flush() (or let update() do it)

•

•

•

•

•

•

•

•

•

•

4.2.4 Applying commands

- 38/77 - Copyright © 2026 PirateJL

January 8, 2026

January 4, 2026

4.2.5 Safety rule

- 39/77 - Copyright © 2026 PirateJL

4.3 Components

4.3.1 Purpose

A component is a unit of data attached to an Entity . In this ECS, components are stored in archetypes (tables) using a

Structure-of-Arrays (SoA) layout: one column per component type.

4.3.2 Component “type” (key)

A component type is identified by a constructor (typically a class):

Any class used as a type key is considered a valid component type.

TypeId mapping

Internally, component constructors are mapped to a stable numeric TypeId via typeId() . TypeId assignment is process-local

and based on constructor identity (via WeakMap).

4.3.3 Component “value”

The component value is the actual instance stored in the archetype column (e.g. new Position(1,2)).

Values are stored per-archetype, per-column (SoA)

Queries return direct references to these values (you mutate them in place)

4.3.4 World operations on components

All component operations are done through World using the component constructor as the key.

Presence / access

has(e, Ctor): boolean

get(e, Ctor): T | undefined

Update (non-structural)

set(e, Ctor, value): void Requires the component to exist; otherwise throws.

Structural changes

These may move the entity between archetypes:

add(e, Ctor, value): void

remove(e, Ctor): void

1
2

class Position { constructor(public x = 0, public y = 0) {} }
class Velocity { constructor(public x = 0, public y = 0) {} }

•

•

•

•

•

•

•

4.3 Components

- 40/77 - Copyright © 2026 PirateJL

4.3.5 Queries and component ordering

world.query(A, B, C) yields rows shaped like:

e : the entity

c1 , c2 , c3 : component values in the same order as the ctor arguments

Example:

4.3.6 Safety rules during iteration

While iterating a query (or while systems are running), direct structural changes can throw. Use deferred commands instead:

enqueue via world.cmd()

apply via world.flush()

January 4, 2026

January 4, 2026

•

•

1 for (const { e, c1: pos, c2: vel } of world.query(Position, Velocity)) { }

•

•

4.3.5 Queries and component ordering

- 41/77 - Copyright © 2026 PirateJL

4.4 Entity

4.4.1 Purpose

An Entity is a lightweight, opaque handle used to reference rows stored inside archetypes. It is not the data itself (components

hold the data).

4.4.2 Type

id : stable numeric slot identifier

gen : generation counter used to detect stale handles after despawn / reuse

4.4.3 Semantics

Identity

An entity handle is considered valid only if both:

the id refers to an allocated slot

the gen matches the current generation for that slot

Stale handles

If an entity is despawned and the id is later reused, the gen will differ. This prevents accidentally operating on “the new entity

that reused the same id”.

4.4.4 Where entities come from

world.spawn() returns an Entity handle

world.query(...) yields rows that include e: Entity

4.4.5 Where entities are used

Entities are passed into World operations (examples):

lifecycle: despawn(e)

components: add(e, Ctor, value) , remove(e, Ctor) , get(e, Ctor) , set(e, Ctor, value)

commands (deferred): cmd.despawn(e) , cmd.add(e, ...) , cmd.remove(e, ...)

4.4.6 Related behavior

Safety during iteration

When iterating query results (which contain e: Entity), structural changes should be deferred via commands and applied with

flush() .

1 type Entity = { id: number; gen: number };

•

•

•

•

•

•

•

•

•

4.4 Entity

- 42/77 - Copyright © 2026 PirateJL

January 4, 2026

January 4, 2026

4.4.6 Related behavior

- 43/77 - Copyright © 2026 PirateJL

4.5 Reference: Events API

4.5.1 Overview

Events are typed, transient messages used to decouple systems. They are stored per event type in double-buffered

channels:

emit() appends to the write buffer (current phase)

drain() / values() read from the read buffer (previous phase)

At each phase boundary, world.swapEvents() swaps buffers so events become visible to the next phase

Key type

Event channels are keyed by ComponentCtor<T> (same as components/resources). Keys are compared by identity.

4.5.2 EventChannel<T> (Events.ts)

emit(ev: T): void

Appends an event to the write buffer for the current phase.

Notes

Emitted events are not readable in the same phase

They become readable after the next swapBuffers() / world.swapEvents()

drain(fn: (ev: T) => void): void

Iterates all readable events (read buffer) and then clears that buffer.

Semantics

Reads only events emitted in the previous phase

After drain , count() becomes 0

Performance

No iterator allocations; uses indexed loop

Clears with length = 0

values(): readonly T[]

Returns a read-only view of the read buffer.

Semantics

Snapshot is valid until the next boundary swap

Do not store the returned array long-term

count(): number

Returns the number of readable events currently in the read buffer.

•

•

•

•

•

•

•

•

•

•

•

4.5 Reference: Events API

- 44/77 - Copyright © 2026 PirateJL

clear(): void

Clears the read buffer only.

clearAll(): void

Clears both read and write buffers.

swapBuffers(): void (internal)

Swaps read/write buffers and clears the new write buffer.

Semantics

Makes events emitted in the previous phase readable now

Drops any undrained events from the prior read buffer at the next swap (phase-scoped delivery)

4.5.3 Delivery model summary (phase-scoped)

If you run phases:

A -> B -> C

Events emitted in A are readable in B. If not drained in B, they are dropped at B -> C swap.

January 13, 2026

January 13, 2026

•

•

4.5.3 Delivery model summary (phase-scoped)

- 45/77 - Copyright © 2026 PirateJL

4.6 Non goals

January 4, 2026

January 4, 2026

4.6 Non goals

- 46/77 - Copyright © 2026 PirateJL

4.7 Query — Reference

4.7.1 Purpose

A Query iterates all entities that have all required component types, efficiently by scanning only the matching archetypes

(tables).

4.7.2 API

world.query(...ctors): Iterable<any>

ctors is a list of component constructors (types) you want to require.

Queries yield rows shaped like:

e : the Entity

c1 , c2 , c3 , …: component values in the same order as the ctors arguments

So query(A, B, C) yields { e, c1: A, c2: B, c3: C } .

4.7.3 Row mapping and ordering

Deterministic component fields

The mapping is positional:

query(A) → { e, c1 }

query(A, B) → { e, c1, c2 }

query(A, B, C) → { e, c1, c2, c3 }

And cN always corresponds to the Nth constructor you passed.

4.7.4 Safety rules during iteration

While iterating a query (or while systems are running), structural changes (spawn/despawn/add/remove) can throw.

Use:

world.cmd() to defer changes

world.flush() (or world.update()) to apply them safely

4.7.5 Example

1
2
3

for (const row of world.query(Position, Velocity)) {
// ...

}

•

•

•

•

•

•

•

1
2
3
4
5
6
7

for (const { e, c1: pos, c2: vel } of world.query(Position, Velocity)) {
pos.x += vel.x;
pos.y += vel.y;

// Safe structural change: defer it
if (pos.x > 10) world.cmd().despawn(e);

}

4.7 Query — Reference

- 47/77 - Copyright © 2026 PirateJL

This pattern is recommended explicitly for queries.

January 6, 2026

January 4, 2026

4.7.5 Example

- 48/77 - Copyright © 2026 PirateJL

4.8 Resources (Singletons / World Globals)

Resources are typed singleton values stored on the World , keyed by a ComponentCtor<T> (same “key shape” as components).

They are not attached to entities.

They’re ideal for global state like Time, Input, Asset caches, Config, RNG, Selection, etc.

4.8.1 Concepts

What is a Resource?

A resource is a single instance of data stored globally in the ECS World .

Components → many per world, attached to entities

Resources → one per key, stored in the world

Key type: ComponentCtor<T>

All resource APIs use:

This usually means:

a class constructor (e.g. class TimeRes { ... })

or a token function (unique function used as a key)

Keys are compared by identity (reference equality), not by name.

4.8.2 API summary

All methods live on World / WorldApi .

Structural safety: resource operations are not structural changes (unlike spawn/despawn/add/remove). They do not require

flushing and are safe to call during system execution.

4.8.3 Method reference

setResource<T>(key, value): void

Stores (or replaces) the resource value for key .

Behavior

Overwrites any existing value.

Does not flush and does not affect archetypes.

•

•

1 ComponentCtor<T>

•

•

1
2
3
4
5
6

setResource<T>(key: ComponentCtor<T>, value: T): void
getResource<T>(key: ComponentCtor<T>): T | undefined
requireResource<T>(key: ComponentCtor<T>): T
hasResource<T>(key: ComponentCtor<T>): boolean
removeResource<T>(key: ComponentCtor<T>): boolean
initResource<T>(key: ComponentCtor<T>, factory: () => T): T

•

•

4.8 Resources (Singletons / World Globals)

- 49/77 - Copyright © 2026 PirateJL

Example

getResource<T>(key): T | undefined

Returns the resource value if present, otherwise undefined .

Use when

the resource is optional (debug tools, plugins, editor-only state)

Important note

If you explicitly store undefined as the value, this also returns undefined .

Use hasResource(key) to distinguish:

“missing”

vs “present but undefined”

Example

requireResource<T>(key): T

Returns the resource value if present, otherwise throws.

Use when

the resource is required for correct operation (Time, Input, AssetCache, Config)

Throws

Error if missing

Example

hasResource<T>(key): boolean

Checks whether an entry exists for key .

Use when

you need to distinguish missing vs present-but-undefined

you want conditional initialization

Example

1
2
3

class ConfigRes { constructor(public difficulty: "easy" | "hard") {} }

world.setResource(ConfigRes, new ConfigRes("hard"));

•

•

•

•

•

1
2

const debug = world.getResource(DebugRes);
if (debug) debug.enabled = true;

•

•

1
2

const input = w.requireResource(InputStateRes);
if (input.keysDown.has("KeyW")) { /* ... */ }

•

•

1
2
3

if (!world.hasResource(TimeRes)) {
world.setResource(TimeRes, new TimeRes());

}

4.8.3 Method reference

- 50/77 - Copyright © 2026 PirateJL

removeResource<T>(key): boolean

Removes the resource entry for key .

Returns

true if the entry existed and was removed

false otherwise

Example

initResource<T>(key, factory): T

Insert-once helper.

Behavior

If resource exists → returns existing value (factory is not called)

If missing → calls factory() , stores, returns the new value

Use when

bootstrapping default resources without double-init

Example

4.8.4 Usage patterns

Pattern: “bootstrap required resources once”

Pattern: “systems read required resources”

Pattern: “asset cache resource”

•

•

1 world.removeResource(DebugRes);

•

•

•

1
2
3

class TimeRes { dt = 0; elapsed = 0; }

world.initResource(TimeRes, () => new TimeRes());

1
2
3
4
5

class TimeRes { dt = 0; elapsed = 0; }
class InputStateRes { keysDown = new Set<string>(); }

world.initResource(TimeRes, () => new TimeRes());
world.initResource(InputStateRes, () => new InputStateRes());

1
2
3
4
5

function timeSystem(w: WorldApi, dt: number) {
const time = w.requireResource(TimeRes);
time.dt = dt;
time.elapsed += dt;

}

1
2
3
4
5

class AssetCacheRes {
images = new Map<string, HTMLImageElement>();

}

world.initResource(AssetCacheRes, () => new AssetCacheRes());

4.8.4 Usage patterns

- 51/77 - Copyright © 2026 PirateJL

4.8.5 Gotchas

1) Keys must be stable and unique

Because keys are identity-based:

✅ class TimeRes {} used as key is stable

✅ a top-level const TOKEN = (() => {}) as ComponentCtor<T> is stable

❌ creating a new token function inline each time won’t match previous entries

2) Prefer requireResource() in gameplay systems

It keeps systems clean and fails fast when initialization is missing.

3) Resources are not entities

Do not use resources for data that should exist per-entity (that’s components).

January 14, 2026

January 9, 2026

•

•

•

4.8.5 Gotchas

- 52/77 - Copyright © 2026 PirateJL

4.9 Schedule

4.9.1 Purpose

Schedule is a phase runner: it groups systems under named phases, then runs those phases in a chosen order, calling

world.flush() between phases to apply deferred structural commands deterministically.

4.9.2 Construction

Schedule is independent from World ; you pass the World (or compatible object) at run time.

4.9.3 Adding systems to phases

add(phase: string, fn: SystemFn): this

Registers a system function under a phase name.

You can register multiple systems under the same phase.

Example:

4.9.4 Running phases

run(world: WorldLike, dt: number, phases: string[]): void

Runs the schedule for a single tick:

Executes phases in the exact order provided by phases .

Calls world.flush() after each phase (phase barrier).

Example:

4.9.5 Flush semantics

Schedule relies on world.flush() to apply deferred structural changes queued via commands, enabling safe structural edits while

systems and queries run.

4.9.6 Relationship to World.update(dt)

world.update(dt) runs the world’s own registered systems and flushes at the end.

Schedule is used when you want explicit phase ordering and flush points between groups of systems rather than only at

frame end.

1 const sched = new Schedule();

•

1
2
3
4

sched
.add("input", (w: any) => { /* ... */ })
.add("sim", (w: any, dt) => { /* ... */ })
.add("render", (w: any) => { /* ... */ });

•

•

1
2

const phases = ["input", "sim", "render"];
sched.run(world, 1/60, phases);

•

•

4.9 Schedule

- 53/77 - Copyright © 2026 PirateJL

January 4, 2026

January 4, 2026

4.9.6 Relationship to World.update(dt)

- 54/77 - Copyright © 2026 PirateJL

4.10 Systems

4.10.1 Purpose

A system is a function executed by the ECS to update simulation state (usually by iterating queries and mutating component

values). Systems are registered on the World , and executed during world.update(dt) .

4.10.2 System function type

SystemFn

A system is a function with the signature:

(world: WorldApi, dt: number) => void

In practice, examples call query() and cmd() inside systems, which are available through WorldApi .

4.10.3 Registering systems

world.addSystem(fn): this

Adds a system to the world.

Systems run in the order they were added (as described by “runs systems in order”).

Example:

4.10.4 Running systems (frame execution)

world.update(dt): void

Runs one ECS frame:

Runs all registered systems (in order)

Flushes queued commands at the end

The reference summary explicitly lists:

addSystem(fn): this

update(dt): void (runs systems in order, then flushes)

•

•

1
2
3
4
5
6
7
8

world.addSystem((w: any, dt: number) => {
for (const { e, c1: pos, c2: vel } of w.query(Position, Velocity)) {

pos.x += vel.x * dt;
pos.y += vel.y * dt;

if (pos.x > 10) w.cmd().despawn(e);
}

});

1.

2.

•

•

4.10 Systems

- 55/77 - Copyright © 2026 PirateJL

4.10.5 Structural changes inside systems

While systems are running (and while iterating queries), doing structural changes directly can throw. The recommended pattern

is:

enqueue structural changes with world.cmd()

apply them with world.flush() (or let update() do it at the end)

4.10.6 Systems in phases (Schedule)

If you need explicit ordering across groups of systems, use Schedule :

sched.add(phase, systemFn)

sched.run(world, dt, phases) runs phases in order and calls world.flush() after each phase

This provides deterministic “phase barriers” where deferred commands are applied.

January 6, 2026

January 4, 2026

•

•

•

•

4.10.5 Structural changes inside systems

- 56/77 - Copyright © 2026 PirateJL

4.11 World

4.11.1 Purpose

World is the central authority of the ECS. It owns and coordinates:

entity lifecycle

archetypes and component storage

queries

deferred structural commands

system execution

There is exactly one World instance per ECS context.

4.11.2 Construction

Side effects

Initializes an empty entity pool

Initializes archetype storage

Initializes command buffer

Initializes system list

4.11.3 Entity Lifecycle API

spawn(): Entity

Creates a new entity immediately.

Allocates a new entity id

Marks entity as alive

Places entity in the empty archetype

spawnMany(...items: ComponentCtorBundleItem[]): Entity

Creates a new entity along with its initial components immediately.

...items: ComponentCtorBundleItem[] is the list of components to add to the newly created entity.

Internally, it iterates over the items and calls add for each component.

•

•

•

•

•

1 const world = new World();

•

•

•

•

•

•

•

1 const e = world.spawn();

•

•

4.11 World

- 57/77 - Copyright © 2026 PirateJL

despawn(e: Entity): void

Immediately removes an entity.

Invalidates the entity handle (gen mismatch)

Removes the entity from its archetype

Frees the slot for reuse

Throws if:

entity is stale or not alive

despawnMany(entities: Entity[]): void

Immediately removes multiple entities.

entities: Entity[] is the list of entities to despawn.

Internally, it iterates over the array and calls despawn(e) for each entity.

isAlive(e: Entity): boolean

Checks whether an entity handle is still valid.

4.11.4 Component API

All component types are identified by constructor identity.

has<T>(e: Entity, ctor: ComponentCtor<T>): boolean

Checks if an entity has a component.

get<T>(e: Entity, ctor: ComponentCtor<T>): T | undefined

Returns the component value or undefined .

Does not throw if missing

Returns undefined for stale entities

add<T>(e: Entity, ctor: ComponentCtor<T>, value: T): void

Adds a component to an entity.

Structural change

Moves the entity to a different archetype

Throws if:

entity is stale

component already exists

structural changes are forbidden (see iteration rules)

•

•

•

•

•

•

1 if (world.isAlive(e)) { ... }

•

•

•

•

•

•

•

4.11.4 Component API

- 58/77 - Copyright © 2026 PirateJL

addMany(e: Entity, ...items: ComponentCtorBundleItem[]): void

Adding multiple components to an existing entity.

e: Entity is the target entity.

...items: ComponentCtorBundleItem[] is the list of components to add.

Internally, it loops through the items and calls add for each component.

remove<T>(e: Entity, ctor: ComponentCtor<T>): void

Removes a component.

Structural change

Moves the entity to a different archetype

Throws if:

entity is stale

component does not exist

structural changes are forbidden

removeMany(e: Entity, ...ctors: ComponentCtor<any>[]): void

Removes multiple component types from an entity.

e: Entity is the target entity.

...ctors: ComponentCtor<any>[] is the list of component constructors (types) to remove.

Internally, it loops through the ctors and calls remove for each one.

set<T>(e: Entity, ctor: ComponentCtor<T>, value: T): void

Updates an existing component value.

Non-structural

Does not change archetypes

Throws if:

entity is stale

component does not exist

4.11.5 Query API

query(...ctors): Iterable<QueryRow>

Iterates entities that contain all requested components.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1
2
3
4
5

for (const { e, c1, c2 } of world.query(A, B)) {
// e -> Entity
// c1 -> A
// c2 -> B

}

4.11.5 Query API

- 59/77 - Copyright © 2026 PirateJL

PROPERTIES

Iterates archetypes, not entities

Components are returned as c1 , c2 , … in argument order

Query iteration locks structural changes

4.11.6 Structural Change Rules

While iterating a query or running systems:

❌ spawn , despawn , add , remove are forbidden

✔️ get , set , has are allowed

Violations throw a runtime error.

4.11.7 Command Buffer API

cmd(): Commands

Returns a command buffer for deferred structural changes.

Commands are queued, not applied immediately.

flush(): void

Applies all queued commands.

Safe to call after queries

Automatically called by update() and Schedule

4.11.8 System API

addSystem(fn: SystemFn): this

Registers a system.

Systems are executed in insertion order.

update(dt: number): void

Runs one ECS frame.

Execution order:

Run all systems

Flush deferred commands

•

•

•

•

•

1 world.cmd().despawn(e);

•

•

1 world.addSystem((w, dt) => { ... });

1.

2.

1 world.update(1 / 60);

4.11.6 Structural Change Rules

- 60/77 - Copyright © 2026 PirateJL

4.11.9 Events API

emit<T>(key: ComponentCtor<T>, ev: T): void

Emits an event of type T into the current phase write buffer.

events<T>(key: ComponentCtor<T>): EventChannel<T>

Returns the event channel for key , creating it if missing.

drainEvents<T>(key: ComponentCtor<T>, fn: (ev: T) => void): void

Drains readable events for the given type.

Behavior

If the channel doesn’t exist yet, it’s a no-op (does not allocate/create)

clearEvents<T>(key?: ComponentCtor<T>): void

Clears readable events.

If key is provided: clears that event type’s read buffer

If omitted: clears the read buffers of all event types

swapEvents(): void (internal / schedule boundary)

Swaps all event channels’ buffers. Called by Schedule at phase boundaries.

Required schedule behavior At each phase boundary:

4.11.10 Internal Guarantees

Archetypes use Structure of Arrays (SoA)

Entity handles are generation-safe

Component lookups are O(1) per archetype row

Queries are archetype-filtered, not entity-scanned

•

•

•

1
2

world.flush();
world.swapEvents();

•

•

•

•

4.11.9 Events API

- 61/77 - Copyright © 2026 PirateJL

4.11.11 Error Conditions (Summary)

4.11.12 Design Constraints

Single-threaded

No automatic conflict detection

No parallel systems

No borrowing model

These are intentional for simplicity and predictability.

January 13, 2026

January 4, 2026

Operation Error Condition

add / remove during query iteration

add component already exists

remove component missing

set component missing

any stale entity

•

•

•

•

4.11.11 Error Conditions (Summary)

- 62/77 - Copyright © 2026 PirateJL

5. Tutorials

5.1 Tutorial 1 — Your first ECS World

Outcome: you’ll run a tiny simulation loop where entities with Position + Velocity move over time, using World , spawn , add ,

query , addSystem , and update(dt) .

5.1.1 1) What is an ECS? (one sentence)

ECS is a way to build simulations where entities are IDs, components are data, and systems are functions that iterate

entities with specific components.

5.1.2 2) Create a tiny project

Install is npm i archetype-ecs-lib .

5.1.3 3) Create tutorial1.ts

Create a file named tutorial1.ts with this code:

1
2
3
4
5

mkdir ecs-tutorial-1
cd ecs-tutorial-1
npm init -y
npm i archetype-ecs-lib
npm i -D typescript tsx

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

import { World, WorldApi } from "archetype-ecs-lib";

// 1) Components = data (any class can be a component type)
class Position { constructor(public x = 0, public y = 0) {} }
class Velocity { constructor(public x = 0, public y = 0) {} }

// 2) Create a World (owns entities, components, systems)
const world = new World();

// 3) Spawn an entity and add components
const e = world.spawnMany(

new Position(0, 0, 0),
new Velocity(2, 0)// 2 units/sec along x

)

// 4) Add a system (runs each update)
world.addSystem((w, dt) => {

for (const { e, c1: pos, c2: vel } of w.query(Position, Velocity)) {
pos.x += vel.x * dt;
pos.y += vel.y * dt;

}
});

// 5) Run a small simulation loop (60 frames)
const dt = 1 / 60;

for (let frame = 1; frame <= 60; frame++) {
world.update(dt);

// Read back Position and print it
const pos = world.get(e, Position)!;
if (frame % 10 === 0) {

console.log(`frame ${frame}: x=${pos.x.toFixed(2)} y=${pos.y.toFixed(2)}`);
}

}

5. Tutorials

- 63/77 - Copyright © 2026 PirateJL

This uses the documented API:

spawn() , add(e, Ctor, value)

addSystem(fn)

query(Position, Velocity) yielding { e, c1, c2 }

update(dt) to run systems each tick

5.1.4 4) Run it

You should see something like:

frame 10: x=0.33 ...

frame 60: x=2.00 ...

(Your exact decimals may differ slightly depending on rounding.)

5.1.5 5) You’ve built the core loop

You now have:

a World

entities created with spawn()

components added with add()

a system iterating query(...)

a running simulation driven by update(dt)

January 8, 2026

January 4, 2026

•

•

•

•

1 npx tsx tutorial1.ts

•

•

•

•

•

•

•

5.1.4 4) Run it

- 64/77 - Copyright © 2026 PirateJL

5.2 Tutorial 2 — Components & archetypes

Outcome: you’ll see how component sets automatically form archetypes (tables), and how entities “move” between them when

you add() / remove() components—without digging into internals. Archetypes store data in SoA (one column per component

type).

5.2.1 1) Define a few component types

Create tutorial2.ts :

The ECS uses component constructors as the “type key”, and archetypes store entities in SoA tables.

5.2.2 2) Create a World and spawn entities with different component sets

5.2.3 3) Add a tiny helper to “see” matches

We can’t (and don’t need to) access archetype tables directly. Instead, we observe which queries match, before and after

structural changes.

The query API yields { e, c1, c2, ... } rows in the order you request components.

1
2
3
4
5
6

import { World } from "archetype-ecs-lib";

// Components are just data classes
class Position { constructor(public x = 0, public y = 0) {} }
class Velocity { constructor(public x = 0, public y = 0) {} }
class Health { constructor(public hp = 100) {} }

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

const world = new World();

// e1 has: Position
const e1 = world.spawn();
world.add(e1, Position, new Position(1, 1));

// e2 has: Position + Velocity
const e2 = world.spawn();
world.add(e2, Position, new Position(0, 0));
world.add(e2, Velocity, new Velocity(1, 0));

// e3 has: Health
const e3 = world.spawn();
world.add(e3, Health, new Health(50));

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

function ids(iter: Iterable<{ e: { id: number } }>): number[] {
const out: number[] = [];
for (const row of iter) out.push(row.e.id);
return out.sort((a, b) => a - b);

}

function dump(label: string) {
console.log(`\n=== ${label} ===`);
console.log("Position:", ids(world.query(Position)));
console.log("Velocity:", ids(world.query(Velocity)));
console.log("Health: ", ids(world.query(Health)));
console.log("Pos+Vel: ", ids(world.query(Position, Velocity)));
console.log("Pos+HP: ", ids(world.query(Position, Health)));

}

5.2 Tutorial 2 — Components & archetypes

- 65/77 - Copyright © 2026 PirateJL

5.2.4 4) Observe the “automatic archetypes” effect

Add this and run once:

You’ll see (by IDs) that:

e1 matches Position only

e2 matches both Position and Pos+Vel

e3 matches Health only

What this demonstrates: entities with the same component set are stored together (same archetype). Archetypes are created

implicitly as you introduce new component combinations.

5.2.5 5) Make an entity “move” between archetypes (add)

Now add a component to e1 :

You should see:

e1 now appears in Velocity

and also in Pos+Vel

Why: add() is a structural change that can move an entity into a different archetype table (because its component set

changed).

5.2.6 6) Make an entity “move” between archetypes (remove)

Now remove Position from e2 :

You should see:

e2 disappears from Position and Pos+Vel

e2 still appears in Velocity

Again: remove() is structural and can move the entity to a new archetype.

5.2.7 7) Run it

5.2.8 What you just learned (by doing)

Components are plain data types (classes).

Archetypes (tables) are created automatically for each distinct component set, stored in SoA layout.

1 dump("initial");

•

•

•

1
2

world.add(e1, Velocity, new Velocity(0, 2));
dump("after: add Velocity to e1");

•

•

1
2

world.remove(e2, Position);
dump("after: remove Position from e2");

•

•

1 npx tsx tutorial2.ts

•

•

5.2.4 4) Observe the “automatic archetypes” effect

- 66/77 - Copyright © 2026 PirateJL

When you add() / remove() components, entities “move” because their component set changes (structural change).

Note for later tutorials: structural changes can be unsafe while iterating; that’s why cmd() + flush() exist.

January 14, 2026

January 4, 2026

•

5.2.8 What you just learned (by doing)

- 67/77 - Copyright © 2026 PirateJL

5.3 Tutorial 3 — Deferred structural changes

Outcome: you’ll learn the one rule that prevents most ECS bugs: don’t change entity structure while iterating. You’ll

reproduce the problem safely, then fix it using Commands and flush points (via Schedule). The library explicitly supports this

workflow: defer structural operations with world.cmd() and apply them with world.flush() / Schedule phase boundaries.

5.3.1 1) Create tutorial4.ts

5.3.2 2) Define simple components

5.3.3 3) Setup: spawn a few movers

This is standard structural usage: spawn() + add() .

5.3.4 4) The unsafe thing (don’t do this)

Add this function:

Now call it once (inside a try/catch so the tutorial keeps going):

The lib will warn that structural changes during query iteration can throw and instructs to use cmd() + flush() instead.

1 import { World, WorldApi, Schedule } from "archetype-ecs-lib";

1
2

class Position { constructor(public x = 0) {} }
class Velocity { constructor(public x = 0) {} }

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

const world = new World();

function spawnMover(x: number, vx: number) {
const e = world.spawn();
world.add(e, Position, new Position(x));
world.add(e, Velocity, new Velocity(vx));
return e;

}

spawnMover(0, 2);
spawnMover(5, -3);
spawnMover(9, 1);

1
2
3
4
5
6
7
8

const unsafeDespawnInsideQuery: SystemFn = (w: WorldApi) => {
for (const { e, c1: pos } of w.query(Position)) {

if (pos.x > 8) {

// ❌ Structural change during iteration (may throw)
w.despawn(e);

}
}

}

1
2
3
4
5
6

try {
unsafeDespawnInsideQuery(world);
console.log("unsafe: no error (but still not safe)");

} catch (err: any) {
console.log("unsafe: error as expected ->", String(err.message ?? err));

}

5.3 Tutorial 3 — Deferred structural changes

- 68/77 - Copyright © 2026 PirateJL

5.3.5 5) The safe fix: use Commands

Replace the unsafe function with a safe one:

Commands let you queue:

spawn , despawn , add , remove

5.3.6 6) Apply commands at a flush point

Option A — Manual flush

flush() applies queued commands (and update() also flushes automatically at the end).

Option B — Flush at phase boundaries (recommended)

Use Schedule , which flushes after each phase:

Schedule.run(world, dt, phases) runs phases and calls world.flush() after each phase.

5.3.7 7) Run a few ticks and print what’s left

Add a small logger:

Now run:

1
2
3
4
5
6
7
8

const safeDespawnInsideQuery: SystemFn = (w: WorldApi) => {
for (const { e, c1: pos } of w.query(RenderContextComponent)) {

if (pos.x > 8) {

// ✅ Defer structural change
w.cmd().despawn(e);

}
}

}

•

1
2

safeDespawnInsideQuery(world);
world.flush(); // apply queued despawns

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

const sched = new Schedule();

sched.add("sim", (w: WorldApi) => {
// move
for (const { c1: pos, c2: vel } of w.query(Position, Velocity)) {

pos.x += vel.x;
}

});

sched.add("cleanup", (w: WorldApi) => {
// safely despawn based on updated positions
safeDespawnInsideQuery(w);

});

// Flush happens after each phase automatically
const phases = ["sim", "cleanup"];

1
2
3
4
5
6
7

function logPositions(w: WorldApi, label: string) {
const items: string[] = [];
for (const { e, c1: pos } of w.query(Position)) {

items.push(`e${e.id}:${pos.x.toFixed(1)}`);
}
console.log(label, items.join(" | ") || "(none)");

}

1
2
3
4
5
6

logPositions(world, "before");

for (let i = 0; i < 5; i++) {
sched.run(world, 0, phases);
logPositions(world, `after tick ${i + 1}`);

}

5.3.5 5) The safe fix: use Commands

- 69/77 - Copyright © 2026 PirateJL

5.3.8 8) Full file (copy/paste)

5.3.9 9) Run it

You’ll see:

the unsafe version may throw (depending on timing/guarding)

the safe version consistently despawns entities after they cross the threshold

phase flush points make the timing predictable

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

import { World, Schedule } from "archetype-ecs-lib";

class Position { constructor(public x = 0) {} }
class Velocity { constructor(public x = 0) {} }

const world = new World();

function spawnMover(x: number, vx: number) {
const e = world.spawn();
world.add(e, Position, new Position(x));
world.add(e, Velocity, new Velocity(vx));
return e;

}

spawnMover(0, 2);
spawnMover(5, -3);
spawnMover(9, 1);

const unsafeDespawnInsideQuery: SystemFn = (w) => {
for (const { e, c1: pos } of w.query(Position)) {

if (pos.x > 8) {

w.despawn(e); // ❌ may throw
}

}
}

try {
unsafeDespawnInsideQuery(world as any);
console.log("unsafe: no error (but still not safe)");

} catch (err: any) {
console.log("unsafe: error as expected ->", String(err.message ?? err));

}

const safeDespawnInsideQuery: SystemFn = (w) => {
for (const { e, c1: pos } of w.query(Position)) {

if (pos.x > 8) w.cmd().despawn(e); // ✅ deferred
}

}

function logPositions(w: WorldApi, label: string) {
const items: string[] = [];
for (const { e, c1: pos } of w.query(Position)) {

items.push(`e${e.id}:${pos.x.toFixed(1)}`);
}
console.log(label, items.join(" | ") || "(none)");

}

const sched = new Schedule();

sched.add("sim", (w: WorldApi) => {
for (const { c1: pos, c2: vel } of w.query(Position, Velocity)) {

pos.x += vel.x;
}

});

sched.add("cleanup", (w: WorldApi) => {
safeDespawnInsideQuery(w);

});

const phases = ["sim", "cleanup"];

logPositions(world, "before");
for (let i = 0; i < 5; i++) {

sched.run(world, 0, phases); // flush after each phase
logPositions(world, `after tick ${i + 1}`);

}

1 npx tsx tutorial4.ts

•

•

•

5.3.8 8) Full file (copy/paste)

- 70/77 - Copyright © 2026 PirateJL

January 14, 2026

January 4, 2026

5.3.9 9) Run it

- 71/77 - Copyright © 2026 PirateJL

5.4 Tutorial 4 — Writing systems

Outcome: you’ll write real gameplay logic as systems: query components, mutate data safely, and run everything through a

Schedule (input → sim → cleanup) with automatic flush() between phases.

5.4.1 1) Create tutorial3.ts

The lib exports World and Schedule .

5.4.2 2) Define components (data only)

5.4.3 3) Create a World and spawn a few entities

This uses the documented structural ops: spawn() and add() .

5.4.4 4) System function signature (what you write)

A system is a function called like:

(world, dt) => void

Systems are added using world.addSystem() like world.addSystem((w: WorldApi, dt: number) => ...) .

In this tutorial we’ll register systems on a Schedule (phases), but the function shape is the same.

5.4.5 5) Write your first real system: movement

This system queries Position + Velocity and updates positions.

Query rows provide { e, c1, c2, ... } in the same order as the query arguments.

1 import { World, WorldApi, Schedule, SystemFn } from "archetype-ecs-lib";

1
2
3

class Position { constructor(public x = 0, public y = 0) {} }
class Velocity { constructor(public x = 0, public y = 0) {} }
class Lifetime { constructor(public seconds = 1.0) {} } // despawn when <= 0

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

const world = new World();

function spawnMover(x: number, y: number, vx: number, vy: number, life = 2.0) {
const e = world.spawn();
world.add(e, Position, new Position(x, y));
world.add(e, Velocity, new Velocity(vx, vy));
world.add(e, Lifetime, new Lifetime(life));
return e;

}

spawnMover(0, 0, 2, 0, 1.2);
spawnMover(0, 1, 1, 0, 2.5);
spawnMover(0, 2, -1, 0, 0.8);

•

1
2
3
4
5
6

const movementSystem: SystemFn = (w: WorldApi, dt: number) => {
for (const { c1: pos, c2: vel } of w.query(Position, Velocity)) {

pos.x += vel.x * dt;
pos.y += vel.y * dt;

}
}

5.4 Tutorial 4 — Writing systems

- 72/77 - Copyright © 2026 PirateJL

5.4.6 6) Mutating data safely: despawn using commands

Despawning is a structural change, so do it through cmd() inside systems.

5.4.7 7) Add a small “cleanup / log” system

We’ll print positions so you can see it running. This does not do structural changes.

5.4.8 8) Run systems via Schedule (phases)

Create a schedule

Register systems under phases

Run phases each tick

Schedule.run(world, dt, phases) runs phases in order and calls world.flush() after each phase.

5.4.9 9) Run the loop

1
2
3
4
5
6
7
8

const lifetimeSystem: SystemFn = (w: WorldApi, dt: number) => {
for (const { e, c1: life } of w.query(Lifetime)) {

life.seconds -= dt;
if (life.seconds <= 0) {

w.cmd().despawn(e); // safe: deferred
}

}
}

1
2
3
4
5
6
7

const logSystem: SystemFn = (w: WorldApi, dt: number) => {
const lines: string[] = [];
for (const { e, c1: pos } of w.query(Position)) {

lines.push(`e${e.id} @ (${pos.x.toFixed(2)}, ${pos.y.toFixed(2)})`);
}
console.log(`frame ${frame}: ${lines.join(" | ")}`);

}

1.

2.

3.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

const sched = new Schedule();

sched.add("sim", movementSystem);
sched.add("sim", lifetimeSystem);

// log in a separate phase so structural changes are already flushed
let frameNo = 0;
sched.add("cleanup", (w: WorldApi) => {

frameNo++;
logSystem(w, frameNo);

});

const phases = ["sim", "cleanup"];

1
2
3
4

const dt = 1 / 10; // bigger dt so it’s easy to see
for (let i = 0; i < 20; i++) {

sched.run(world, dt, phases);
}

5.4.6 6) Mutating data safely: despawn using commands

- 73/77 - Copyright © 2026 PirateJL

5.4.10 10) Full file (copy/paste)

5.4.11 11) Run it

You’ll see entities moving, then disappearing as their Lifetime reaches 0 (despawned safely via commands + phase flush).

January 14, 2026

January 4, 2026

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

import { World, WorldApi Schedule, SystemFn } from "archetype-ecs-lib";

class Position { constructor(public x = 0, public y = 0) {} }
class Velocity { constructor(public x = 0, public y = 0) {} }
class Lifetime { constructor(public seconds = 1.0) {} }

const world = new World();

function spawnMover(x: number, y: number, vx: number, vy: number, life = 2.0) {
const e = world.spawn();
world.add(e, Position, new Position(x, y));
world.add(e, Velocity, new Velocity(vx, vy));
world.add(e, Lifetime, new Lifetime(life));
return e;

}

spawnMover(0, 0, 2, 0, 1.2);
spawnMover(0, 1, 1, 0, 2.5);
spawnMover(0, 2, -1, 0, 0.8);

const movementSystem: SystemFn = (w: WorldApi, dt: number) => {
for (const { c1: pos, c2: vel } of w.query(Position, Velocity)) {

pos.x += vel.x * dt;
pos.y += vel.y * dt;

}
}

const lifetimeSystem: SystemFn = (w: WorldApi, dt: number) => {
for (const { e, c1: life } of w.query(Lifetime)) {

life.seconds -= dt;
if (life.seconds <= 0) w.cmd().despawn(e);

}
}

const logSystem: SystemFn = (w: WorldApi, dt: number) => {
const lines: string[] = [];
for (const { e, c1: pos } of w.query(Position)) {

lines.push(`e${e.id} @ (${pos.x.toFixed(2)}, ${pos.y.toFixed(2)})`);
}
console.log(`frame ${frame}: ${lines.join(" | ")}`);

}

const sched = new Schedule();
sched.add("sim", movementSystem);
sched.add("sim", lifetimeSystem);

let frameNo = 0;
sched.add("cleanup", (w: WorldApi) => {

frameNo++;
logSystem(w, frameNo);

});

const phases = ["sim", "cleanup"];

const dt = 1 / 10;
for (let i = 0; i < 20; i++) {

sched.run(world, dt, phases);
}

1 npx tsx tutorial3.ts

5.4.10 10) Full file (copy/paste)

- 74/77 - Copyright © 2026 PirateJL

5.5 Tutorial 5 — ECS + Three.js (render-sync + safe spawn/despawn)

Outcome: you’ll see moving cubes in Three.js. You’ll also spawn new cubes on click and despawn them safely using cmd() +

phase flush boundaries (via Schedule).

5.5.1 1) Create a new project

The ECS package is installed as archetype-ecs-lib .

5.5.2 2) Add index.html

Create index.html :

1
2
3
4
5
6

mkdir ecs-threejs-tutorial
cd ecs-threejs-tutorial
npm init -y

npm i archetype-ecs-lib three
npm i -D vite typescript

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

<!doctype html>
<html lang="en">

<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>ECS + Three.js Tutorial</title>
<style>

html, body { margin: 0; height: 100%; overflow: hidden; }
#hud {

position: fixed; left: 12px; top: 12px;
padding: 8px 10px; border-radius: 8px;
background: rgba(0,0,0,0.55); color: #fff;
font-family: system-ui, sans-serif; font-size: 13px;
user-select: none;

}
</style>

</head>
<body>

<div id="hud">Click to spawn cubes</div>
<script type="module" src="/src/main.ts"></script>

</body>
</html>

5.5 Tutorial 5 — ECS + Three.js (render-sync + safe spawn/despawn)

- 75/77 - Copyright © 2026 PirateJL

5.5.3 3) Add src/main.ts

Create src/main.ts :

5.5.3 3) Add src/main.ts

- 76/77 - Copyright © 2026 PirateJL

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94

5.5.3 3) Add src/main.ts

- 77/77 - Copyright © 2026 PirateJL

	Archetype ECS lib Documentation
	1. Archetype ECS Lib
	1.1 Install
	1.2 Quick start
	1.3 Notes & limitations
	1.4 License

	2. Explanation
	2.1 ECS and the game loop
	2.1.1 Frame phases
	2.1.2 Where ECS fits
	A concrete mapping using this primitives

	2.1.3 Why ECS does not replace rendering, input, or physics engines
	Rendering
	Input
	Physics

	2.1.4 The key idea: ECS is the coordination model

	2.2 Integrating an ECS with Three.js
	2.2.1 The mental model: ECS drives state, Three.js draws it
	2.2.2 Where ECS fits in the Three.js render loop
	2.2.3 Why flush points matter for Three.js integration
	2.2.4 A clean integration pattern: “Renderable bridge” components
	2.2.5 One-way vs two-way sync (pick a source of truth)
	2.2.6 Why ECS does not replace Three.js (and shouldn’t try)
	2.2.7 Scaling tips (when entity counts grow)

	2.3 What people mean by a “full ECS”
	2.3.1 ECS as architecture, not just storage
	Storage-only ECS (not “full”)
	Architecture ECS (“full ECS”)

	2.3.2 Difference between a library ECS and an engine ECS
	Library ECS
	Engine ECS (Bevy / Unity DOTS / etc.)

	2.4 Why archetype ECS?
	2.4.1 Cache locality
	2.4.2 Branch elimination (and “no-join” iteration)
	2.4.3 Predictable iteration
	2.4.4 Comparison with sparse-set ECS
	Rule of thumb

	2.4.5 The real trade-off (why it’s not “always archetypes”)

	2.5 Why deferred commands exist in an archetype ECS
	2.5.1 Archetypes are tables, and queries walk those tables
	2.5.2 The core problem: structural changes move entities between tables
	2.5.3 Why it’s unsafe to do structural changes during a query
	1) Swap-remove can invalidate the current row
	2) Moving entities changes which archetypes match
	3) Internal indices can become stale mid-loop

	2.5.4 Deferred commands are the solution: separate “read/iterate” from “mutate structure”
	2.5.5 Why flushing in phases is architecturally important
	2.5.6 What you gain by deferring
	Correctness
	Determinism
	Performance

	2.5.7 What to do inside a system
	2.5.8 Summary: the “why” in one sentence

	2.6 Why use Events in ECS?
	2.6.1 Events solve a different problem than Components and Resources
	2.6.2 Events reduce coupling between systems
	2.6.3 Why double-buffering?
	2.6.4 Why phase-scoped delivery?
	2.6.5 Trade-offs (and the forwarding pattern)

	3. How To Guides
	3.1 How to add InputState + AssetCache as Resources and use them in systems
	3.1.1 Goal
	Example InputStateRes
	Example AssetCacheRes

	3.1.2 1) Register the resources at startup
	3.1.3 2) Wire DOM events into InputStateRes
	3.1.4 3) Reset “pressed/released” flags once per frame
	3.1.5 4) Read input from systems
	3.1.6 5) Use AssetCacheRes in a render system (deduped async loads)
	3.1.7 6) Run phases in order
	3.1.8 Common variations
	Optional resource usage
	Preload assets (menu/loading screen)

	3.2 How to add/remove components at runtime
	3.3 How to despawn entities safely
	3.4 How to have multiple Worlds (globe vs ground simulation)
	3.5 How to integrate ECS into a game loop
	3.5.1 Option A — Use world.update(dt)
	3.5.2 Option B — Use Schedule phases (recommended for games)

	3.6 How to run logic conditionally
	3.6.1 Option A — Guard inside the system (simple)
	3.6.2 Option B — Conditional phases (skip whole groups)
	3.6.3 Option C — Wrap systems (reuse predicates)

	3.7 How to split logic into multiple system phases
	3.8 How to use ECS alongside Three.js
	3.8.1 Pattern: ECS owns state, Three.js owns objects

	3.9 How to use Events to decouple systems across phases
	3.9.1 Goal
	3.9.2 1) Define event types
	3.9.3 2) Emit events from a producer system
	3.9.4 3) Consume events in the next phase
	3.9.5 4) Deliver events to late phases (forwarding pattern)
	3.9.6 5) Use events(key).values() for read-only inspection
	3.9.7 6) Clear events when resetting state

	4. Reference
	4.1 Archetypes
	4.1.1 Purpose
	4.1.2 Storage model
	Table layout (SoA)

	4.1.3 Archetype membership
	Structural changes move entities between archetypes

	4.1.4 Queries and archetypes
	Archetype filtering
	Query row shape

	4.1.5 Safety constraints
	Structural changes during iteration

	4.1.6 Visibility / Public API

	4.2 Commands
	4.2.1 Purpose
	4.2.2 How to obtain a Commands buffer
	world.cmd(): Commands

	4.2.3 Supported operations
	spawn(init?)
	spawnBundle(...items: ComponentCtorBundleItem[])
	despawn(e: Entity)
	despawnBundle(entities: Entity[])
	add(e, ctor, value)
	addBundle(e: Entity, ...items: ComponentCtorBundleItem[])
	remove(e, ctor)
	removeBundle(e: Entity, ...ctors: ComponentCtor<any>[])

	4.2.4 Applying commands
	world.flush(): void
	With Schedule

	4.2.5 Safety rule

	4.3 Components
	4.3.1 Purpose
	4.3.2 Component “type” (key)
	TypeId mapping

	4.3.3 Component “value”
	4.3.4 World operations on components
	Presence / access
	Update (non-structural)
	Structural changes

	4.3.5 Queries and component ordering
	4.3.6 Safety rules during iteration

	4.4 Entity
	4.4.1 Purpose
	4.4.2 Type
	4.4.3 Semantics
	Identity
	Stale handles

	4.4.4 Where entities come from
	4.4.5 Where entities are used
	4.4.6 Related behavior
	Safety during iteration

	4.5 Reference: Events API
	4.5.1 Overview
	Key type

	4.5.2 EventChannel<T> (Events.ts)
	emit(ev: T): void
	drain(fn: (ev: T) => void): void
	values(): readonly T[]
	count(): number
	clear(): void
	clearAll(): void
	swapBuffers(): void (internal)

	4.5.3 Delivery model summary (phase-scoped)

	4.6 Non goals
	4.7 Query — Reference
	4.7.1 Purpose
	4.7.2 API
	world.query(...ctors): Iterable<any>

	4.7.3 Row mapping and ordering
	Deterministic component fields

	4.7.4 Safety rules during iteration
	4.7.5 Example

	4.8 Resources (Singletons / World Globals)
	4.8.1 Concepts
	What is a Resource?
	Key type: ComponentCtor<T>

	4.8.2 API summary
	4.8.3 Method reference
	setResource<T>(key, value): void
	getResource<T>(key): T | undefined
	requireResource<T>(key): T
	hasResource<T>(key): boolean
	removeResource<T>(key): boolean
	initResource<T>(key, factory): T

	4.8.4 Usage patterns
	Pattern: “bootstrap required resources once”
	Pattern: “systems read required resources”
	Pattern: “asset cache resource”

	4.8.5 Gotchas
	1) Keys must be stable and unique
	2) Prefer requireResource() in gameplay systems
	3) Resources are not entities

	4.9 Schedule
	4.9.1 Purpose
	4.9.2 Construction
	4.9.3 Adding systems to phases
	add(phase: string, fn: SystemFn): this

	4.9.4 Running phases
	run(world: WorldLike, dt: number, phases: string[]): void

	4.9.5 Flush semantics
	4.9.6 Relationship to World.update(dt)

	4.10 Systems
	4.10.1 Purpose
	4.10.2 System function type
	SystemFn

	4.10.3 Registering systems
	world.addSystem(fn): this

	4.10.4 Running systems (frame execution)
	world.update(dt): void

	4.10.5 Structural changes inside systems
	4.10.6 Systems in phases (Schedule)

	4.11 World
	4.11.1 Purpose
	4.11.2 Construction
	Side effects

	4.11.3 Entity Lifecycle API
	spawn(): Entity
	spawnMany(...items: ComponentCtorBundleItem[]): Entity
	despawn(e: Entity): void
	despawnMany(entities: Entity[]): void
	isAlive(e: Entity): boolean

	4.11.4 Component API
	has<T>(e: Entity, ctor: ComponentCtor<T>): boolean
	get<T>(e: Entity, ctor: ComponentCtor<T>): T | undefined
	add<T>(e: Entity, ctor: ComponentCtor<T>, value: T): void
	addMany(e: Entity, ...items: ComponentCtorBundleItem[]): void
	remove<T>(e: Entity, ctor: ComponentCtor<T>): void
	removeMany(e: Entity, ...ctors: ComponentCtor<any>[]): void
	set<T>(e: Entity, ctor: ComponentCtor<T>, value: T): void

	4.11.5 Query API
	query(...ctors): Iterable<QueryRow>
	Properties

	4.11.6 Structural Change Rules
	4.11.7 Command Buffer API
	cmd(): Commands
	flush(): void

	4.11.8 System API
	addSystem(fn: SystemFn): this
	update(dt: number): void

	4.11.9 Events API
	emit<T>(key: ComponentCtor<T>, ev: T): void
	events<T>(key: ComponentCtor<T>): EventChannel<T>
	drainEvents<T>(key: ComponentCtor<T>, fn: (ev: T) => void): void
	clearEvents<T>(key?: ComponentCtor<T>): void
	swapEvents(): void (internal / schedule boundary)

	4.11.10 Internal Guarantees
	4.11.11 Error Conditions (Summary)
	4.11.12 Design Constraints

	5. Tutorials
	5.1 Tutorial 1 — Your first ECS World
	5.1.1 1) What is an ECS? (one sentence)
	5.1.2 2) Create a tiny project
	5.1.3 3) Create tutorial1.ts
	5.1.4 4) Run it
	5.1.5 5) You’ve built the core loop

	5.2 Tutorial 2 — Components & archetypes
	5.2.1 1) Define a few component types
	5.2.2 2) Create a World and spawn entities with different component sets
	5.2.3 3) Add a tiny helper to “see” matches
	5.2.4 4) Observe the “automatic archetypes” effect
	5.2.5 5) Make an entity “move” between archetypes (add)
	5.2.6 6) Make an entity “move” between archetypes (remove)
	5.2.7 7) Run it
	5.2.8 What you just learned (by doing)

	5.3 Tutorial 3 — Deferred structural changes
	5.3.1 1) Create tutorial4.ts
	5.3.2 2) Define simple components
	5.3.3 3) Setup: spawn a few movers
	5.3.4 4) The unsafe thing (don’t do this)
	5.3.5 5) The safe fix: use Commands
	5.3.6 6) Apply commands at a flush point
	Option A — Manual flush
	Option B — Flush at phase boundaries (recommended)

	5.3.7 7) Run a few ticks and print what’s left
	5.3.8 8) Full file (copy/paste)
	5.3.9 9) Run it

	5.4 Tutorial 4 — Writing systems
	5.4.1 1) Create tutorial3.ts
	5.4.2 2) Define components (data only)
	5.4.3 3) Create a World and spawn a few entities
	5.4.4 4) System function signature (what you write)
	5.4.5 5) Write your first real system: movement
	5.4.6 6) Mutating data safely: despawn using commands
	5.4.7 7) Add a small “cleanup / log” system
	5.4.8 8) Run systems via Schedule (phases)
	5.4.9 9) Run the loop
	5.4.10 10) Full file (copy/paste)
	5.4.11 11) Run it

	5.5 Tutorial 5 — ECS + Three.js (render-sync + safe spawn/despawn)
	5.5.1 1) Create a new project
	5.5.2 2) Add index.html
	5.5.3 3) Add src/main.ts

